DOI QR코드

DOI QR Code

Synthesis and characterization of silicon ion substituted biphasic calcium phosphate

실리콘 이온이 첨가된 biphasic calcium phosphate의 합성 및 특성평가

  • Song, Chang-Weon (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Tae-Wan (School of Materials Science Engineering, Pusan National University) ;
  • Kim, Dong-Hyun (School of Materials Science Engineering, Pusan National University) ;
  • Park, Hong-Chae (School of Materials Science Engineering, Pusan National University) ;
  • Yoon, Seog-Young (School of Materials Science Engineering, Pusan National University)
  • Received : 2010.09.28
  • Accepted : 2010.10.08
  • Published : 2010.10.31

Abstract

Si-substituted biphasic calcium phosphates (Si-BCP) were prepared by co-precipitation method. X-ray diffraction and fourier transform infrared spectroscopy were used to characterize the structure of Si-BCP powders. The Si-BCP powders with various Ca/(P+Si) molar ratio were carried out on structural change of hydroxyapatite (HAp) and ${\beta}$-tricalcium phosphate ($\ss$-TCP). The in-vitro bioactivity of the Si-BCP powders was determined by immersing the powders in SBF solution, after that observing the chemical composition and morphology change by X-ray diffraction, scanning electron microscope and energy dispersive spectroscopy.

Si-BCP(si-substituted biphasic calcium phosphate)를 제조하기 위하여 $Ca(NO_3)_2{\cdot}4H_2O$, $(NH_4)_2HPO_4$, $Si(OC_2H_5)_4$을 출발 물질로 공침법(co-precipitation process)을 이용하여 합성하였다. 합성된 분말의 HAp/${\beta}$-TCP 결정상 비율 및 Si-P 치환 거동은 X-선 회절 상 분석을 이용하여 측정하였고, silicon ion 첨가 시 나타나는 BCP의 화학적 결합거동을 측정하기 위하여 FT-IR를 사용하여 분석하였다. 또한 Si-BCP 분말의 in-vitro 생분해거동 및 생체활성도를 측정하기 위하여 제조된 분말을 SBF(simulated body fluid) solution에 침적시킨 뒤 분말의 형상과 구성 성분은 SEM과 EDS를 통하여 확인하였다.

Keywords

References

  1. S. Sanchez-Salcedo, F. Balas, I. Izquierdo-Barba and M. Vallet-Regi, "In vitro structural changes in porous HA/ b-TCP scaffolds in simulated body fluid", Acta Biomaterialia 5 (2009) 2738. https://doi.org/10.1016/j.actbio.2009.03.025
  2. R.W. Bucholz, A. Carlton and R.E. Holmes, "Hydroxyapatite and tricalcium phosphate bone graft substitutes", Orthop. Clic. North Am. 18 (1987) 323.
  3. W. Suchanek and M. Yoshimura, "Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants", J. Mater. Res. 13 (1998) 94. https://doi.org/10.1557/JMR.1998.0015
  4. Y. Ota, T. Iwashita, T. Kasuga, Y. Abe and A. Seki, "Bone formation following implantation of fibrous compounds ($\beta$-Ca(PO3)2, CaCO3(Aragonite)) into bone marrow", J. Mater. Sci. 12 (2002) 895.
  5. J.H. Kim, Y.M. Park, Y.Y. Yang, S.Y. Yoon and H.C. Park, "Microstructural development in synthetic hydroxyapatite", J. Kor. Ceram. Soc. 41 (2004) 289. https://doi.org/10.4191/KCERS.2004.41.4.289
  6. D.J. Baek, T.Y. Yang, Y.B. Lee, S.Y. Yoon and H.C. Park, "Fabrication of hydroxyapatite whiskers by hydrolysis of $\alpha$-TCP", J. Kor. Ceram. Soc. 40 (2003) 608. https://doi.org/10.4191/KCERS.2003.40.6.608
  7. E.B. Nery, R.Z. LeGeros, K.L. Lynch and K. Lee, "Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects", Periodontol 63 (1992) 729. https://doi.org/10.1902/jop.1992.63.9.729
  8. R.Z. LeGeros, S. Lin, R. Rohanizadeh, D. Mijares and J.P. LeGeros, "Biphasic ca1cium phosphate bioceramics: preparation, properties and applications", J. Mater. Sci. Mater. Med. 14 (2003) 201. https://doi.org/10.1023/A:1022872421333
  9. E.M. Carlisle, "Silicon: a requirement in bone formation independent of vitamin D1", Calcif. Tissue. Int. 33 (1981) 27. https://doi.org/10.1007/BF02409409
  10. S.G. Dahl, P. Allain, P.J. Marie, Y. Mauras, G. Boivin and P. Ammann, "Incorporation and distribution of strontium in bone", Bone 28 (2001) 446. https://doi.org/10.1016/S8756-3282(01)00419-7
  11. E. Shorr and A.C. Carter, "The usefulness of strontium as an adjuvant to calcium in the remineralization of the skeleton in man", Bull. Hosp. Jt. Dis. Orthop. Inst. 13 (1952) 59.
  12. J.M. Burnell, E.J. Teubner and A.G. Miller, "Normal maturational changes in bone matrix, mineral, and crystal size in the rat", Calcif. Tissue. Int. 31 (1980) 13. https://doi.org/10.1007/BF02407162
  13. A. Bigi, E. Foresti, R. Gregorini, A. Ripamonti, N. Roveri and J.S. Shah, "The role of magnesium on the structure of biological apatites", Calcif. Tissue. Int. 50 (1992) 439. https://doi.org/10.1007/BF00296775
  14. A.S. Prasad, "Zinc: an overview", Nutrition 11 (1995) 93.
  15. L. Medvecky, R. Sulajterova, L. Parilak, J. Trpcevska, J. Durisin and S.M. Barinov, "Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid? Colloids Surf A 281 (2006) 221. https://doi.org/10.1016/j.colsurfa.2006.02.042
  16. H. Rico, N. Gomez-Raso, M. Revilla, E.R. Hernandez, C. Seco and E. Paez, "Effects on bone loss of manganese alone or with copper supplement in ovariectomized rats: a morphometric and densitometric study", Eur. J. Obstet. Gynecol. Reprod. Biol. 90 (2009) 97.
  17. I.R. Gibson, S.M. Best and W. Bonfield, "Chemical characterization of siliconsubstituted hydroxyapatite", J. Biomed. Mater. Res. 44 (1999) 422. https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-#
  18. N. Patel, S.M. Best and W. Bonfield, "Characterization of hydroxyapatite and substituted-hydroxyapatites for bone grafting", J. Aust. Ceram. Soc. 41 (2005) 1.
  19. M. Vallet-Regi and D. Arcos, "Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants", J. Mater. Chem. 15 (2005) 1509. https://doi.org/10.1039/b414143a
  20. Mao-Shuan Huang, Hong-Da Wu, Nai-Chia Teng, Bou- Yue Peng, Jia-Yo Wu, Wei-Jen Chang, Jen-Chang Yang, Chien-Chung Chen and Sheng-Yang Lee, "In vivo evaluation of poorly crystalline hydroxyapatite-based biphasic calcium phosphate bone substitutes for treating dental bony defects", J. Dent. Sci. 5(2) (2010) 100. https://doi.org/10.1016/S1991-7902(10)60014-1
  21. Maria Vallet-Regi and Daniel Arcos, "Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants" J. Mater. Chem. 15 (2005) 1509. https://doi.org/10.1039/b414143a
  22. Joel W. Reid, Loughlin Tuck, Michael Sayer, Karen Fargo and Jason A. Hendry, "Synthesis and characterization of single-phase silicon-substituted a-tricalcium phosphate", Biomaterials 27 (2006) 2916. https://doi.org/10.1016/j.biomaterials.2006.01.007
  23. F. Balas, J. Perez-Pariente and M. Vallet-Regi, "In vitro bioactivity of siliconsubstituted Hydroxyapatites", J. Biomed. Mater. Res. A 66 (2003) 364.
  24. A.E. Porter, C.M. Botelho, M.A. Lopes, J.D. Santos, S.M. Best and W. Bonfield, "Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo", J. Biomed. Mater. Res. A 69 (2004) 670.
  25. A.M. Pietak, J.W. Reid, M.J. Stott and M. Sayer, "Silicon substitution in the calcium phosphate bioceramics", Biomaterials 28 (2007) 4023. https://doi.org/10.1016/j.biomaterials.2007.05.003
  26. A.E. Porter, N. Patel, J.N. Skepper, S.M. Best and W. Bonfield, "Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics", Biomaterials 24 (2003) 4609. https://doi.org/10.1016/S0142-9612(03)00355-7
  27. G. Gasqueres, C. Bonhomme, J. Maquet, F. Babonneau, S. Hayakaw, T. Kanaya and A. Osakab, "Revisiting silicate substituted hydroxyapatite by solid state NMR", Magn. Reson. Chem. 46 (2008) 342. https://doi.org/10.1002/mrc.2109
  28. I.R. Gibson, S.M. Best and W. Bonfield, "Effect of silicon substitution on the sintering and microstructure of hydroxyapatite", J. Am. Ceram. Soc. 85 (2002) 2771.
  29. X.W. Li, H.Y. Yasuda and Y. Umakoshi., "Bioactive ceramic composites sintered from hydroxyapatite and silica at 1200 C: preparation, microstructures and in vitro bone-like layer growth", J. Mater. Sci: Mater. Med. 17 (2006) 573. https://doi.org/10.1007/s10856-006-8942-2

Cited by

  1. Bioactivity behavior of Si and Mg ion-substituted biphasic calcium phosphate powders vol.22, pp.2, 2012, https://doi.org/10.6111/JKCGCT.2012.22.2.092
  2. Bioactivity behavior of biphasic calcium phosphate powders prepared by co-precipitation method vol.22, pp.2, 2012, https://doi.org/10.6111/JKCGCT.2012.22.2.099