Amino Acid Composition Changes in Soybean Sprouts during Cultivation

재배기간에 따른 콩나물의 아미노산 조성 변화

  • Song, Beom-Seok (Team for Food Irradiation Technology, Korea Atomic Energy Research Institute) ;
  • Kim, Min-Jung (Research Division for Emerging Innovative Technology, Korea Food Research Institute) ;
  • Kim, Gang-Sung (Department of Food Service and Nutrition, Yongin University)
  • 송범석 (한국원자력연구원 방사선식품공학팀) ;
  • 김민정 (한국식품연구원 미래전략기술연구본부) ;
  • 김강성 (용인대학교 식품영양학과)
  • Received : 2010.04.22
  • Accepted : 2010.09.24
  • Published : 2010.10.30

Abstract

We examined changes in the amino acid composition of soybean sprouts of four different Korean soybean cultivars (Yutae, Jinunee, Subaktae, and Baktae). Total amino acids levels in all samples 1 day after cultivation were lower than those in soybeans but increased at cultivation times greater then 3 days. Glutamic and aspartic acids, the most abundant amino acids in all soybean cultivars studied at day 0 of sprouting, constituted more than 30% of all amino acids. Aspartic acid content of hypocotyls markedly increased, but glutamic acid levels decreased 5-day-old sprouts of Jinunee and 3-day-old sprouts of the other cultivars. Moreover, compositions of aspartic acid decreased in the order hypocotyl > root > cotyledon and Yutae > Baktae > Jinunee > Subaktae.

본 연구는 국내산 나물콩(쥐눈이, 수박태, 유태, 백태)의 재배기간에 따른 아미노산 조성변화를 조사하기 위해 수행 되었다. 재배기간에 따른 시료 콩나물의 총 아미노산 함량 분석 결과 모든 시료에서 1일째 다소 감소하였으나 재배기간이 증가할수록 완만히 증가하였다. 재배일수에 따른 콩나물 부위 별 아미노산 조성분석 결과 0일차 원료콩의 전체 아미노산 중 glutamic acid과 aspartic acid이 30% 이상으로 비교적 높게 나타났으며, 쥐눈이는 5일 이후 그리고 나머지 품종들은 3일째 이후부터 배축과 뿌리의 aspartic acid 함량이 급격하게 증가한 반면 자엽의 glutamic acid는 현저히 감소하였다. 또한 aspartic acid 함량비는 부위별로는 배축, 뿌리, 자엽의 순으로 높았으며 품종별로는 유태, 백태, 쥐눈이, 수박태 순으로 높았다.

Keywords

References

  1. Kim KS, Kim SD, Kim JK, Kim JN, Kim KJ. (1982) Effect of blue light on the major components of soybean-sprouts. Korean J. Nutr. Food, 11, 7-12
  2. Park IK, Kim SD. (2003) Sugar and free amino acid content of chitosan-treated soybean sprouts. J. Chitin Chitosan, 8, 105-110
  3. Choi SD, Kim YH, Nam SH, Shon MY. (2002) Quality characteristics of soybean sprout cultivated with extract of Korean Glycyrrhiza glabra. Korean J. Food Preserv., 9, 174-178
  4. Branca F, Lorenzetti S. (2005) Health effects of phytoestrogen. Forum Nutr., 57, 100-111
  5. Kim YH, Lee JH, Koo BK, Lee HS. (2007) Isoflavone rich bean sprouts improves hyperlipidemia. J. Korean Soc. Food Sci. Nutr., 36, 1248-1256 https://doi.org/10.3746/jkfn.2007.36.10.1248
  6. Tripathi AK, Misra AK. (2005) Soybean - A consummate functional food: A review. J. Food Sci. Technol., 42, 111-119
  7. Kim SD, Kim SH, Hong EH. (1993) Composition of soybean sprout and its nutritional value. J. Korean Soybean Res., 1, 1-9
  8. Kim YG, Im TG, Park SS, Heo NC, Hong SS. (2000) Effect of the defatted sesame seed extracts on quality characteristics of soybean sprouts. Korean J. Food Sci. Technol., 32, 742-746
  9. Yang CB. (1982) Changes of nitrogen compounds and nutritional evaluation of soybean sprout-Part V. Relationship of among trypsin inhibitor activity, digestibility and nutritional value. J. Korean Agric. Chem. Soc., 25, 8-13
  10. Eun JH, Eom JH, Kim DJ. (2009) Change and estimated availability of NDF binding trace minerals in soybean sprouts depending on cultivation periods. J. Korean Soc. Food Sci. Nutr., 38, 333-337 https://doi.org/10.3746/jkfn.2009.38.3.333
  11. Kim SD, Jang BH, Kim HS, Ha KH, Kang KS, Kim DH. (1982) Studies on the changes in chlorophyll, free amino acid and vitamin C content of soybean sprouts during circulation periods. Korean J. Nutr. Food, 11, 57-62
  12. Yang CB, Park SK, Yoon SK. (1984) Changes of protein during growth of soybean sprout. Korean J. Food Sci. Technol., 16, 472-474
  13. Kumar V, Rani A, Pandey V, Chauhan GS. (2006) Changes in lipoxygenase isozymes and trypsin inhibitor activity in soybean during germination at different temperatures. Food Chem., 99, 563-568 https://doi.org/10.1016/j.foodchem.2005.08.024
  14. Plaza L, De Ancos B, Cano MP. (2003) Nutritional and health-related compounds in sprouts and seeds of soybean (Glycine max), wheat (Triticum aestivum.L) and alfalfa (Medicago sativa) treated by a new drying method. Eur. Food Res. Technol., 216, 138-144 https://doi.org/10.1007/s00217-002-0640-9
  15. Chavan JK, Kadam SS. (1989) Nutritional improvement of cereals by sprouting. Crit. Rev. Food Sci. Nutr., 28, 401-437 https://doi.org/10.1080/10408398909527508
  16. Jang HK. (1995) Soybean sprouts. The Korean society of food science and nutrition. Nutr. Dietetics, 9, 30-32
  17. Kim WJ, Kim NM, Sung HS. (1984) Effect of germination on phytic acid and soluble minerals in soymilk. Korean J. Food Sci. Technol., 16, 358-362
  18. Byun SM, Huh NE, Lee CY. (1977) Asparagine biosynthesis in soybean sprouts. J. Korean Agric. Chem. Soc., 20, 33-42
  19. Jeon SH, Lee KA, Byuon KE. (2005) Studies on changes of isoflavone and nutrients during germination of soybean varieties. Korean J. Human Ecol., 14, 1-5
  20. Yang CB. (1981) Changes of nitrogen compounds and nutritional evaluation of soybean sprout-Part II. Changes of amino acid composition. J. Korean Agric. Chem. Soc., 24, 94-100
  21. Yang CB. (1981) Changes of nitrogen compounds and nutritional evaluation of soybean sprout-Part II. Changes of free amino acid composition. J. Korean Agric. Chem. Soc., 24, 101-104
  22. A.O.A.C. (1980) Official Methods of Analysis. 14th ed.. Association of Official Analytical Chemists. Washington DC, p.31
  23. Kim JG, Kim SK, Lee JS. (1988) Fatty acid composition and electrophoretic patterns of protein of Korean soybeans. Korean J. Food Sci. Technol., 20, 263-271
  24. Choi SD, Kim YH, Nam SH, Shon MY, Choi JH. (2003) Changes in major taste components of soybean sprout germinated with extract of Korean Panax ginseng. Korean J. Life Sci., 13, 273-279 https://doi.org/10.5352/JLS.2003.13.3.273
  25. Lee JD, Hwang YH, Cho HY, Kim DU, Choung MG. (2002) Comparison of characteristics related with soybean sprouts between Glycine max and G. Soja. Korean J. Crop Sci., 47, 189-195