잉크젯 프린팅 방식으로 형성된 구리 배선의 전기적 특성 평가

Electrical Characteristics of Copper Circuit using Inkjet Printing

  • Kim, Kwang-Seok (School of Advanced Materials Science and Engineering, Sungkyunkwan University) ;
  • Koo, Ja-Myeong (Inkjet Business Group, Samsung Electro-Mechanics) ;
  • Joung, Jae-Woo (Samsung Electro-Mechanics) ;
  • Kim, Byung-Sung (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Jung, Seung-Boo (School of Advanced Materials Science and Engineering, Sungkyunkwan University)
  • 투고 : 2010.08.30
  • 심사 : 2010.09.17
  • 발행 : 2010.09.30

초록

직접인쇄기술 방식은 기존의 포토리소그래피 방법을 이용한 패터닝 기술에 비해 저비용, 간단한 공정 과정, 친환경성 등 여러 장점들로 인해 미세 회로 형성 분야의 그린 테크놀로지로 최근 각광받고 있다. 이러한 프린팅 기반의 전자기술을 상용화하기 위해서는 프린팅 방식으로 형성된 회로의 전기적 특성 평가가 필수적인데, 이에 본 연구에서는 구리 잉크를 이용하여 잉크젯 프린팅 방식으로 2 가지 타입, parallel transmission line(PTL)과 coplanar waveguide(CPW) 구조의 회로를 형성하고 $250^{\circ}C$에서 30분 동안 소결하여 완성하였다. 전류-전압 그래프로 직류 저항을 측정하여 벌크 구리의 비저항 값의 약 3.3배되는 평균 0.558 ${\mu}{\Omega}{\cdot}cm$의 비저항 값을 도출하였고 회로의 고주파 특성 평가를 위해 주파수 범위 0~30 GHz에서 probe station chuck과 샘플 간의 갭 유무에 따른 scattering parameter를 측정하였다. 모든 시편에서 5 dB 이하의 반사 특성을 보였으며, PTL 회로가 CPW 구조보다 전반적으로 더 좋은 통과 특성을 나타내었다.

Direct printing technology is an attractive metallization method, which has become immerging as "Green technology" to the conventional photolithography, on account of low cost, simple process and environment-friendliness. In order to commercialize the printed electronics in industry, it is essential to evaluate the electrical properties of conductive circuits using direct printing technology. In this contribution, we focused on the electrical characteristics of inkjet-printed circuits. A Cu nanoink was inkjet-printed onto a Bisaleimide triazine(BT) substrate with parallel transmission line(PTL) and coplanar waveguide(CPW) type, then was sintered at $250^{\circ}C$ for 30 min. We calculated the resistivity of printed circuits through direct current resistance by the measurement of I-V curve: the resistivity was approximately 0.558 ${\mu}{\Omega}{\cdot}cm$ which is about 3.3 times that of bulk Cu. Cascade's probe system in the frequency range from 0 to 30 GHz were employed to measure the Scattering parameter(S-parameter) with or without a gap between the substrate and the probe station chuck. The result of measured S-parameter showed that all printed circuits had over 5 dB of return loss in the entire frequency range. In the curve of insertion loss, $S_{21}$, showed that the PTL type circuits had better transmission of radio frequency (RF) than CPW type.

키워드

참고문헌

  1. K. Alexander, B. M. Matti, A. Shai and M. Shlomo, "Ink-jet printing of metallic nanoparticles and microemulsions", Macromol. Rapid Commun., 26(4), 281 (2005). https://doi.org/10.1002/marc.200400522
  2. 류병환, 최영민, "차세대 평판디스플레이용 잉크젯 프린팅 기술", 기계저널, 제46권, 제12호, (2006) pp. 55-61.
  3. J. D. Lee, M. J. Kim and S. H. Lee, "Investigation of Co-firing process for Al-BSF formation of screen printing solar cells (In Kor.)", Journal of KSES, 30(1), 334 (2010).
  4. J. H. Kim, C. Y. Lee and J.R. Kim, "Technical trends of direct printing electronics(In Kor.)", Journal of Engineering and Technology, 17, 77 (2008).
  5. H. H. Lee, K. S. Chou and K. C. Huang, "Inkjet printing of nanosized silver colloids", Nanotechnology, 16(10), 2436 (2005). https://doi.org/10.1088/0957-4484/16/10/074
  6. J. W. Kim, Y. C. Lee, J. M. Kim, W. Nah, H. S. Lee, H. C. Kwon and S. B. Jung, "Characterization of direct patterned Ag circuits for RF application", Microelectronic Engineering, 87(3), 379 (2010). https://doi.org/10.1016/j.mee.2009.06.012
  7. J. W. Kim, S. J. Hong, Y. S. Kim, Y. S. Kim, J. N. Lee and N. K. Kang, "Recent advances in eco-friendly nano-ink technology for display and semiconductor application(In Kor.)", J. Microelectron. Packag. Soc. 17(1), 33 (2010).
  8. S. C. Park, J. W. Kim, K. Kim, S. Park, Y. Lee and Y. B. Park, "Interfacial adhesion between screen-printed Ag and epoxy resin-coated polyimide(In Kor.)", J. Microelectron. Packag. Soc. 17(1), 41 (2010).
  9. P. Buffat and J-P. Borel, "Size effect on the melting temperature of gold particles", Physical Review A, 13(6), 2287 (1976). https://doi.org/10.1103/PhysRevA.13.2287
  10. D. Kim, S. Jeong, K. Kang and J. Moon, "Ink-jet printing of silver conductive tracks on flexible substrates", Mol. Cryst. Liq. Cryst., 459, 45 (2006).
  11. 이종우, 이요한, 윤현남, "프린팅 기반의 투명전극 및 배선재료 개발 동향", 고분자과학과 기술, 제18권, 제3호, (2007) pp. 233-237.
  12. 윤성철, 임종선, 이창진, "인쇄전자소자: 고해상도 인쇄공정 기술의 현황 및 전망", 고분자과학과 기술, 제18권, 제3호, (2007) pp. 238-245.
  13. R. K. F. Teng, A. A. Mostafa, A. Karim, "Study of solar cell fabrication using an electrostatic think-film printing method", 37(5), 419 (1990). https://doi.org/10.1109/41.103438
  14. E. Ramasamy, W. J. Lee, D. Y. Lee and J. S. Song, "Portable, parallel grid dye-sensitized solar cell module prepared by screen printing", Journal of Power Sources, 165(1), 446 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.057
  15. B. Lee, Y. Kim, S. Yang, I. Jeong and J. Moon, "A low-curetemperature copper nano ink for highly conductive printed electrodes", J., Current Applied Physics, 9(2), 157 (2008).
  16. B. K. Park, D. Kim, S. Jeong, J. Moon and J. S. Kim, "Direct writing of copper conductive patterns by ink-jet printing", Thin Solid Films, 515(19) 7706 (2007). https://doi.org/10.1016/j.tsf.2006.11.142
  17. 김성욱, "초미세 잉크젯 공정에 의한 전자 디바이스 제조", 기계저널, 제49권, 제3호, (2009) pp. 48-51.
  18. V. Subramanian, J. M. J. Frechet, P. C. Chang, D. C. Huang, J. B. Lee, S. E. Molesa, A. R. Murphy, D. R. Redinger and S. K. Volkman, "Progress toward development of all-printed RFID tags: materials, processes, and devices", Proceedings of the IEEE, 93, 7, (2005) pp. 1330-1338. https://doi.org/10.1109/JPROC.2005.850305
  19. L. Yang, A. Rida, R. Vyas and M. M. Tentzeris, "RFID tags and RF structures on a paper substrate using inkjet-printing technology", IEEE Trans. Microw. Theory Tech., 55(22), 2894 (2007). https://doi.org/10.1109/TMTT.2007.909886
  20. Y. C. Lee, K. S. Kim, J. W. Kim, J. M. Kim, W. Nah, S. H. Lee and S. B. Jung, "Electrical characteristics of printed Ag nanopaste on polyimide substrate", J. Nanosci. Nanotechnol. 11 (In-press).
  21. J. W. Kim and S. B. Jung, "Electrical characterization of screen-printed conductive circuit with silver nanopaste", Jpn. J. Appl. Phys., 48, 06FD14 (2009).
  22. B. K. Park, D. Kim, S. Jeong, J. Moon and J. S. Kim, "Direct writing of copper conductive patterns by ink-jet printing", Thin Solid Films, 515(19), 7706 (2007). https://doi.org/10.1016/j.tsf.2006.11.142