DOI QR코드

DOI QR Code

Colossal Resistivity Change of Polycrystalline NiO Thin Film Deposited by RF Magnetron Sputtering

RF 마그네트론 스퍼터 방법에 의한 다결정 NiO 박막의 비저항 변화

  • Kim, Youmg-Eun (Korea Institute of Science and Technology, Thin Film Material Research Center) ;
  • No, Young-Soo (Korea Institute of Science and Technology, Thin Film Material Research Center) ;
  • Park, Dong-Hee (Korea Institute of Science and Technology, Thin Film Material Research Center) ;
  • Choi, Ji-Won (Korea Institute of Science and Technology, Thin Film Material Research Center) ;
  • Chae, Keun-Hwa (Korea Institute of Science and Technology, Nano Materials Analysis Center) ;
  • Kim, Tae-Hwan (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Choi, Won-Kook (Korea Institute of Science and Technology, Thin Film Material Research Center)
  • 김영은 (한국과학기술연구원 광전자재료센터) ;
  • 노영수 (한국과학기술연구원 광전자재료센터) ;
  • 박동희 (한국과학기술연구원 광전자재료센터) ;
  • 최지원 (한국과학기술연구원 광전자재료센터) ;
  • 채근화 (한국과학기술연구원 나노재료분석센터) ;
  • 김태환 (한양대학교 전자전기컴퓨터공학부) ;
  • 최원국 (한국과학기술연구원 광전자재료센터)
  • Received : 2010.06.28
  • Accepted : 2010.10.21
  • Published : 2010.11.30

Abstract

Polycrystalline NiO thin films were deposited on glass substrate by RF magnetron sputtering using only Ar as a plasma sputter gas. based on the analysis of x-ray diffraction (XRD), NiO films had a polycrystalline cubic (NaCl type) structure. NiO thin films grown below and above $200^{\circ}C$ showed preferred orientation of (111) and (220) respectively. It showed colossal change in electrical resistivity as much a ${\sim}10^7$ order form an insulating state of $105\;{\Omega}cm$ below $200^{\circ}C$ to a conducting state of $10^{-2}{\sim}10^{-1}\;{\Omega}cm$ above $300^{\circ}C$ such a Mott metal-insulator transition (MIT) in polycrystalline.

NiO 산화물 타겟을 이용한 RF 마그네트론 스퍼터 방법으로 유리 기판 위에 NiO 박막을 Ar 가스만을 사용하여 증착하였으며, 증착 온도에 따라 NiO 박막 특성에 미치는 영향을 조사하였다. XRD 측정으로부터 증착된 박막의 결정구조는 $200^{\circ}C$ 이하에서 (111) 면의 우선 배향성으로 보이다가 $350^{\circ}C$ 이상에서 (220) 면의 우선 배향성을 가지는 다결정 입방구조임을 확인하였다. NiO 박막의 전기적 특성의 변화는 기판의 온도가 $200^{\circ}C$까지는 $10^5\;{\Omega}cm$의 부도체에 가까운 높은 비저항을 보였고 기판의 온도가 $300^{\circ}C$ 이상에서는 $10^{-1}{\sim}10^{-2}{\Omega}cm$의 도체의 특성을 보이는 낮은 비저항으로 감소하는 Mott-Insulator Transition(MIT) 현상을 관측하였다. NiO 박막 내의 증착 온도 변화에 따른 ${\sim}10^7$ 정도의 큰 비저항 변화를 결정성, 결정립의 변화 및 밴드 갭의 변화 등으로 설명하였다.

Keywords

References

  1. E. Fujii, A. Tomozawa, H. Torii, and R. Takayama, Jpn. J. Appl. Phys. 35, L328 (1996). https://doi.org/10.1143/JJAP.35.L328
  2. K. D. Lee, J. Korean Vacuum Soc. 9, 48-59 (2000).
  3. S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. -S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, S. Byun, J. -S. Kim, J. S. Choi, and B. H. Park, Appl. Phys. Lett. 85, 5655 (2004). https://doi.org/10.1063/1.1831560
  4. D. H. Son, E. K. Kim, J. H. Kim, K. S Lee, T. K. Yim, S. M. An, S. H. Won, J. H. Sok, W. S. Hong, T. Y. Kim, M. G. Jang, and K. W. Park, J. Korean Vacuum Soc. 18, 302 (2009). https://doi.org/10.5757/JKVS.2009.18.4.302
  5. J. Y. Park, J. W. Bae, S. W. Hwang, K. D. Kim, Y. A. Cho, J. S. Jeon, D. S. Choi, and K. Y, Yeom, J. Korean Vacuum Soc. 8, 507 (1999).
  6. H. Sato, T. Minami, S. Takata, and T. Yamada, Thin Solid Films 236, 27 (1993). https://doi.org/10.1016/0040-6090(93)90636-4
  7. M. Schulze, R. Resissner, M Lorenz M, U Radke, and W Schurnberger, Electrochimica Acta 44, 3969 (1999). https://doi.org/10.1016/S0013-4686(99)00172-3
  8. H. Kim, R. C Auyeung, and A. Pique, Thin Solid Films 516, 5052 (2008). https://doi.org/10.1016/j.tsf.2007.11.079
  9. J. F. Gubbons and W. E. Beadle, Solid-State Electron 7, 785 (1964). https://doi.org/10.1016/0038-1101(64)90131-5
  10. T. Ishihara, I. Obkubo, K. Tsubouchi, H. Kumigashira, U.S. Joshi, Y. Matsumoto, H. Koinuma, and M. Oshima, Mater. Sci. Engin. B. 149, 40 (2008).
  11. S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. -S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, S. Byun, J. -S. Kim, J. S. Choi, and B. H. Park, Appl. Phys. Lett. 85, 5655 (2004). https://doi.org/10.1063/1.1831560
  12. L. S. Birks and H. J. Friedman, Appl. Phys. 17, 687 (1946). https://doi.org/10.1063/1.1707771
  13. P. P. Chattopadhyay, P. M. Nambissan, S. K. Pabi, and I. Manna, Phys. Rev. B. 63, 054107 (2001). https://doi.org/10.1103/PhysRevB.63.054107
  14. J. I. Pankove, Optical process in semiconductors (Prentice Hall, Inc., NewJersey, 1971).
  15. N. S. Das, B. Saha, R. Thapa, G. C. Das, and K. K. Chattopadhyay, Physica. E. 42, 1377 (2010). https://doi.org/10.1016/j.physe.2009.11.047
  16. P. Singh, A.K. Chawla, D. Kaur, and R. Chandra, Mater. Lett. 61, 2050 (2007). https://doi.org/10.1016/j.matlet.2006.08.013
  17. G. W. A. Dummer, Materials for conductive and resistive function (Hayden Book Company Inc, New York, 1970).
  18. G. Lann, J. Zaanen, G. A. Sawatzky, R. Karnatak, and J. M. Esteva, Phys. Rev. B. 33, 4253 (1986). https://doi.org/10.1103/PhysRevB.33.4253
  19. M. Medarde, A. Fontaine, J. L. Munoz, J. R. Carvajal, M. de Santis, M. Sacchi, G. Rossi, and P. Lacorre, Phys. Rev. B. 46, 14975(1992). https://doi.org/10.1103/PhysRevB.46.14975
  20. S. K. Sharma, P. Kumar, R. Kumar, M. Knobel, P. Thakur, K. H. Chae, W. K. Choi, R. Kumar, and D. Kanjilal, J. Phys.: Condens. Matter. 20, 285211 (2008). https://doi.org/10.1088/0953-8984/20/28/285211
  21. K. Terakura, T. Oguchi, A. R. Williams. and J. Kuber, Phys. Rev. B. 30, 4734 (1984). https://doi.org/10.1103/PhysRevB.30.4734

Cited by

  1. Effect of Intermediate Metal on the Methanol Gas Sensitivity of ITO Thin Films vol.20, pp.3, 2011, https://doi.org/10.5757/JKVS.2011.20.3.195