Degradation Evaluation of Mechanical Properties for 12Cr Ferrite Heat Resisting Steel by Reversible Permeability

가역투자율에 의한 12Cr 페라이트 내열강의 역학적 물성의 열화평가

  • Ryu, Kwon-Sang (Div. of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Kim, Min-Gi (Div. of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Nahm, Seung-Hoon (Div. of Industrial Metrology, Korea Research Institute of Standards and Science) ;
  • Kim, Chung-Seok
  • Received : 2010.08.13
  • Accepted : 2010.10.08
  • Published : 2010.10.30

Abstract

The integrity of the industrial equipment in use under high temperature and high pressure must be assessed by regularly measuring the degraded mechanical properties during service time. In order to nondestructively monitor the degraded mechanical properties of industrial equipment, a measuring method of the reversible permeability(RP) using surface type probe is presented. The method for measuring the RP is based on that RP is the differential value of hysteresis loop. The RP is exactly the foundation hatmonics induced in a detecting coil measured by lock-in amplifier tuned to a frequency of the alternating perturbing magnetic field. The peak of RP is measured around the coercive force. Steel material used in this work was 12Cr ferritic heat resisting steel. The eleven kinds of samples aged during different times under same temperature ($700^{\circ}C$) were prepared. Peak interval of reversible permeability(PIRP), Vickers hardness, and tensile strength measured for the aged samples decreased abruptly for short aging time (below 500 h), but the change became small at a long aging time. Vickers hardness and tensile strength linearly decreased as RIRP decreased, so the degraded mechanical properties of 12Cr ferritic heat resisting steel could be nondestructively evaluated by measuring RIRP.

고온, 고압에서 운용되고 있는 설비의 안전성을 평가하기 위해서는 사용시간 동안 열화된 역학물성을 정기적으로 점검하여야 한다. 비파괴적으로 열화된 설비의 역학적 특성을 점검하기 위하여 표면형 프로브(surface type probe)를 사용한 가역투자율 측정방법이 제시된다. 가역투자율 측정방법은 가역투자율이 자기 이력곡선의 미분값임에 근거하고 있다. 가역투자율은 교류 섭동 자기장의 주파수에 동조된 록-인 증폭기로 측정된 탐지코일에 유도된 전압의 제 1 고조파이다 가역투자율의 첨두값은 보자력 영역에서 나타난다. 실험에 사용된 강재는 12Cr 페라이트 내열강으로 $700^{\circ}C$의 등온에서 열처리 시간을 달리한 11개의 시편을 제작하였다. 가역투자율 첨두값 사이의 간격 (peak interval of reversible permeability: PIRP), 비커스 경도 및 인장강도는 열화가 진행됨에 따라 초기에는 급격하게, 후반에는 완만하게 감소하였다. PIRP가 감소함에 따라 인장강도와 비커스 경도가 선형적으로 감소하였고 이 상관관계를 이용하면 측정한 가역투자율로 12Cr 페라이트 내열강의 열화된 역학적 물성을 비파괴적으로 평가할 수 있다.

Keywords

References

  1. T. Hashimoto, Y. Tanaka, M. Hokano, and D. Hirasaki, "Latest technology of highly efficient coal-fired thermal power plants and future prospects," Mitsubishi Heavy Industries Ltd., Thechnical Review, Vol. 45, No.1, pp. 11-14 (2008)
  2. K. Laha, K. S. Chandravathi, K. B. S. Rao and S. I. Mannan, "Hot tensile properties of simulated heat-affected zone microstructures of 9Cr-1Mo weldment," International Journal of Pressure Vessel & Piping Vol. 62, pp. 303-311 (1995) https://doi.org/10.1016/0308-0161(94)00023-C
  3. 백운봉, 이해무, 이윤희, 남승훈, "X20CrMoV121 강 저주기 피로물성 연구", 2010 대한기계학회 재료 및 파괴부문 춘계학술대회 논문집, pp. 147-148 (2010)
  4. F. Abe, "Bainitic and martensitic creep-resistant steels," Current Opinion Solid State Materials Science, Vol. 8, pp. 305-311 (2004) https://doi.org/10.1016/j.cossms.2004.12.001
  5. P. J. Szabo, "Microstructure development of creep resistant ferritic steel during creep," Materials Science Engineering: A, Vol. 387-389, pp. 710-715 (2004) https://doi.org/10.1016/j.msea.2004.01.091
  6. M. Kimura, K. Yamaguchi, M. Hayakawa, K. Kobayashi and K. Kanazawa, "Microstructures of creep-fatigued 9-12% Crferritic heat-resisting steels," Internatianal Journal of Fatigue, Vol. 28, pp. 300-308 (2006) https://doi.org/10.1016/j.ijfatigue.2005.04.013
  7. C. S. Kim, I. K. Park, K. Y. Jhang, "Nonlinear ultrasonic characterization of thermal degradation in ferritic 2.25Cr-1Mo steel," NDT & E International, Vol. 42, pp. 204-209 (2009) https://doi.org/10.1016/j.ndteint.2008.09.002
  8. S. Luxenburger and W. Arnold, "Laser ultrasonic absorption measurement in fatigue-damaged materials," Ultrasonics, Vol. 40, pp. 797-801 (2002) https://doi.org/10.1016/S0041-624X(02)00212-3
  9. G. Dobmann, M. Kroning, W. Theiner, H. Willems and U. Fiedler, "Nondestructive characterization of materials A growing demand for describing damage and service-life-relevant aging processes in plant components," Nuclear Engineering Design, Vol. 157, pp. 95-112 (1997)
  10. S. Gupta, A. Ray and E. Keller, "Online fatigue damage monitoring by ultrasonic measurements: A symbolic dynamics approach," International Journal of Fatigue, Vol. 29, pp. 1100-1114 (2007) https://doi.org/10.1016/j.ijfatigue.2006.09.011
  11. C. S. Kim and S. I. Kwun, "Influence of precipitate and martensite lath on the magnetic properties in creep damaged 11Cr-3.45W Steel," Materials Transactions, Vol. 48, pp. 3028-3030 (2007) https://doi.org/10.2320/matertrans.MEP2007176
  12. 김정표, 석창성, 송성진, 김영환, "선형 및 비선형 초음파를 이용한 1Cr-1Mo-0.25V의 열화 평가에 관한 연구", 비파괴검사학회지, Vol. 21, pp. 549-555 (2001)
  13. J. W. Shilling and W. A. Soffa, "Magnetic precipitation hardening in a sernihard permanent magnet alloy," Acta Metallurgica, Vol. 26, pp. 413-427 (1978) https://doi.org/10.1016/0001-6160(78)90168-2
  14. M. Yoshino, H. Tanabe, T. Sakamoto, N. Suzuki and Y. Yaji, "Nondestructive measurement of grain size in steel plates by using magnetic coercive force," Materials Science Forum, Vol. 210-213, pp. 45-54 (1996) https://doi.org/10.4028/www.scientific.net/MSF.210-213.45
  15. 박덕근, "자기적 방법을 이용한 구조재료의 비 파괴적 평가", 비파괴검사학회지, Vol. 23, No. 4, pp. 380-387 (2003)
  16. D. C. Jiles, "The effect of compressive plastic deformation on the magnetic properties of AISI 4130 steels with various microstructures," Journal of Physics D: Applied Physics, Vol. 21, pp. 1196-1204 (1988) https://doi.org/10.1088/0022-3727/21/7/023
  17. K. S. Ryu, J. S. Park, S. H. Nahm, K. M. Yu, Y. B. Kim, and D. Son, "Nondestructive evaluation of aged 1Cr-1Mo-0.25V steel by harmonic analysis of induced voltage," Journal of Magnetism and Magnetic Materials, Vol. 231, pp. 294-298 (2001) https://doi.org/10.1016/S0304-8853(01)00177-9
  18. 박수영, 유권상, 이재경, 박종서, "냉연강판의 기계적 물성과 자기적 특성의 상관관계", 한국자기학회지, Vol. 16, pp. 211-215 (2006)
  19. R. Boll, Soft Magnetic Materials, pp. 36-37, John Wiley & Sons, New York, USA, (1979)
  20. 김정석, 유권상, 남승훈, 이승석, 박익근, "가역 투자율을 이용한 초초임계압 페라이트가 강의 고온 풍온열화 평가", 한국자기학회지, Vol. 19 pp. 100-105 (2009) https://doi.org/10.4283/JKMS.2009.19.3.100
  21. S. Takahashi, J. Echigoya and Z. Motoki, "Magnetization curves of plastically defonnaed Fe metals and alloys," Journal of Applied Physics, Vol. 87, pp. 805-813 (2000) https://doi.org/10.1063/1.371945
  22. J. D. Verhoeven, Fundamentals of Physical Metallurgy, pp. 363-420, John Wiley & Sons, New York, USA, (1975)