20104 18 dxES=3

=z 2010-47SD-1-10

SoCE AT AlZ3 ZH%

A
Ak}

=X H 47 @ SD H®

H1= 69

2E W2 ol)dA P2

A%

(Proposal of a Novel Flying Master Bus Architecture For System On a
Chip and Its Evaluation)

O] 572‘ E*,

4

A

[¢]

P
o

Aok
3

(Kook Pyo Lee, Seong Jun Kang, and Yung Sup Yoon)

o
e

17459 SoCE T H3A, ¢l w2

ul 31 Al 3

Bate] A
J—,_% H2 HHLEANE JA5 zasier s) TLM
ol vl E

.&‘Zm

P
&

b oA

ZREZH FEglel A9
PRAEQL Feh vhaE Wk o e F2E Addvh Adw v OW]EW“ Wz st sholy s 018um %ﬂéf’x

PetAct. vkxElg Selojr B E 1009709 24 AlE FEE A7 BhEe], SoC HAL Sl 1
ARy Algyelde
AR AelZol 25~40%, B Tl $3~60% F7HIEE, 87 AbolZol 43~T7%
L8, Y7t ARke F2hY uhaE A opjdA T A A4 SN wa ofyEA Bopg MxT F

ok
ot

Felono) A4 s SE8H 399

oAl

B3 A ol EAIL 7129 Bl&

B,

Abstract

To implement the high performance SoC, we propose the flying master bus architecture that a specially defined master

named as the flying master directly accesses the selected slaves with no regard to the bus protocol. The proposed bus
architecture was implemented through Verilog and mapped the design into Hynix 0.18um technology. As master and slave
wrappers have around 150 logic gate counts, the area overhead is still small considering the typical area of modules in
SoC designs. In TLM performance simulation about proposed architecture, 25~40% of transaction cycle and 43~60% of
bus efficiency are increased and 43~77% of request cycle is decreased, compared with conventional bus architecture.
Conclusively, we assume that the proposed flying master bus architecture is promising as the leading candidate of the bus

architecture in the aspect of performance and efficiency.

Keywords :

I. Introduction

As SoC (System-on-Chip) has dominated the
ASIC world, the competitiveness of SoC performance
has increased and triggered the market to move

EEERREEL TS
(Dept. of Electronics Engineering, Inha University)
T A, Addstn A7) 2L we ety
(Dept. of Electrical and Semiconductor Engineering,
Chonnam National University)
Aedak 200999€15Y, SASEY: 20093124302

(69)

SoC, performance improvement, flying master bus architecture

accordingly. Especially, SoC performance depends on
the bus topology that consists of shared bus protocol,
master, slave, arbiter, decoder and so on. World-class
electronics companies have internally developed the
bus topology such as AMBA, Core Connect and

Silicon Micro-Networks ™,

However, although
several masters and slaves are connected in the
shared bus architecture, only one data transaction
initiated by a selected master can be transferred to a

selected slave. In the case that several masters try to

70

transfer the data transaction, the sequence of a data
communication is decided by the bus arhitration
policy.

If the multiple data transactions of several masters
communicate simultaneously on the shared bus, the
innovative performance improvement can be realized.
However, as the multiple data transactions cannot be
loaded to the shared bus concurrently in the bus
protocol, most of the conventional bus topologies do
not support the parallel data transaction on the
shared bus. Therefore, we propose the novel bus
architecture that is capable of transferring the
multiple data transactions simultaneously, as well as
using existing IP and bus protocol with simple design
modification.

The of this paper
summarized as follows. First, we discuss why the

key contributions are
flying master bus concept is introduced. Second, we
describe which components are consisted and how
much design overhead is needed to implement this
architecture. Third, we verify how much the
performance improvement is realized, using the
probability approach and the TLM (Transaction Level
Model) method that is recently used to explore the

bus architecture deeplym.

II. Flying master bus architecture

1. Concept of flying master bus

Introducing the flying master bus concept (next,
we call flying bus), we propose that a specially
defined master named as the flying master directly
accesses the selected slaves with no regard to the
bus protocol. When the master Ml and M2
concurrently try to initiate the data transactions to
the slave S1 and S2 respectively on the conventional
shared bus, the data transaction of master M1 is first
transferred on the shared bus and that of master M2
is performed with the next sequence. On the other
hand, as the bus architecture of figure 1(a) introduces
the flying master concept, the flying master FM(M1)
transfers the data transaction to slave S1 without the

SoCE %tt ME2 E2iY DtAE M2 OFF|MA P9 Aots 45

(70)

O|=H &

i

|
s1

]

FM(1)

Wrapper

Priority arbitration is
needed in 81 wrapper!!

(o)

a8 1. (@ A 24AL (b) olAE FMMIEE M3(AB)
g A M ojole ALY Hotshs E
21 OfAE BA OFF|IHH X

Fig. 1. Proposed flying master bus architecture about
{a) concurrent and (b) prioly data
communication of master FM(M1) and M3 (AB:
arbiter),

shared bus and the data transaction of master M3 is
performed through the shared bus. In this case, as
the data transactions of master FM(M1) and M3 can
be concurrently transferred, the performance of bus
architecture improves definitely. If flying master and
to transfer the data
data transactions
communicate not concurrently but step by step with

the other masters try
transactions to sarhe slave,
the priority decision of slave wrappers shown in
figure 1(b).

The flying bus can be compared with the multiple
bus system that the additional bus is introduced for
concurrent data communication. However, the multiple
bus system needs the required components containing
a bridge block for the operation of multiple buses.
Furthermore, it is inevitable that the long latency
problems happen in the case that the inter-bus data
communicate through a bridge. In general, it is

20104 18 Mx3&s =X X 47 A SDE A1 = 71

suitable to apply the multiple bus system when the
architecture is comprised of more than 10 masters
and has relatively low probability that the data
transactions communicate through a bridge. Because
the SoCs having the number of more than 10 masters
are over a specification in the industrial companies of
Siemens, Fuzitsu and Samsung, and not required in
the aspect of application, most of the SoCs are not
considered to adopt the multiple bus architecture.
Consequently, 1t is necessary to improve the
performance of single bus architecture such as
proposed flying bus.

2. Design of flying bus

The wrappers of flying master and slave shown in
figure 1 need to interface between the flying master
and the shared bus signals in the flying master bus
system. We use AHB bus model™ to present the
example of our wrappers shown in figure 2. Figure
2(a) shows the flying master wrapper that composes
of a decoder and several multiplexers.
HRDATAI31:0], HRESP[1:0)] and HREADY input
signals are connected in master wrapper and

From
Master To Slaves

HWDATA[31:0}

HWDATAout[31:0]

It HBURSTout]2:0]
HWRITE

HWRITEout

HPROT3:0]

HPROTout[3:0]
HTRANS1:0]

H 1:0]
HLOCK

HLOCKout

HADDR(31:0}

31:0)

Decoder HSEL_s{x:0]
HBUSREQ HGRANTout
HRDATA_S0[31:0] =~
HRDATA $1(31:0] —
HRDATAOUH[31:0]
HRDATA_SN[31:0) =
Solect
HRESP_S0[1:0] 4 signal
HRESP_S1{1:0] —
wie
HRESP_SN[1:0] =
HREADY_50 —
HREADY_S1 4
HREADYout
HREADY_SN— To Master

From Slaves

Flying Master Wrapper

(@

outputted through multiplexers to choose appropriate
signals with the slave selection signal HSEL_s[x:0].
The slave wrapper has a role to select the priority
between the data transactions of the flying master
and the other masters with the HSEL selection block
shown in figure2(b). in this wrapper, HREADY and
HESL out signals are generated after comparing the
transaction signal HTRANS[1:0]. We notice that the
wrappers o f the flying master and the slaves are
simply designed with using only several multiplexers
without additional controller blocks.

3. Logic delay and area overhead

The proposed bus architecture was implemented
through Verilog and mapped the design into Hynix
0.18um technology through the Synopsys Design
Compiler. The logic delay due to the master and the
slave wrappers along the bus is shown in table 1.
The max delay becomes near 3.0ns and 25ns for
master and slave wrappers respectively. In the
synthesized netlists, master and slave wrappers have

around 124 - 164 logic gate counts. However, the area

NWDATAoul[M;‘
HBURSTout[2:0}
HWRITEout

HWDATAcut[31:0]
|HBURSTOUt[2:01
[HWRITEout
[HsizEouti2:0]
HPROToutf3:0]
HTRANSout[1:0]
HLOGKout

HADDRout[31:0] 18-:’““

HWDATA[31:0]
HBURST[2:0]
HWRITE

xXCZ

HSIZE[2:0)
Bus HPROT{3:0]

HTRANS[1:0}

<

HLOCK
HADDRI31:0]

HSEL_x_Bus -
From HSELout
Flying——HSEL_S[x] % p—
Master

To
HREADYoutBus™ Shared Bus
HREADYoutsm— T0

Flying Master

HREADY T—_——>
From

HRESP[1:0] {1:0] To
Stave Fiying Master
HRDATA[1: HRDA I and

i _| shared Bus

Slave Wrapper

(b)

a8 2 (@) 22 oraEe () 3lojE SEe) 25 clo|ofa
Fig. 2. Block diagram of (a) flying master and (b) slave wrappers.

72
E 1L XAz Aol IIRE
Table 1. Max delay and gate count.
Master \s}rapper Slave wrapper
Max delay 2.9ns 248ns
Gate count 124 164
. From HBUSREQ From HSEL_S
Critical path
To HRDATAout To HADDR_S

overhead is still small considering the typical area of
modules in SoC designs.

Finally, we find that it is simple and easy to
implement the flying bus and the design overhead is
rather small, which is only composing of several
multiplexers and bypass interconnection components.

HI. Performance analysis

1. Static performance analysis using probability

If flying master and the other masters try to
transfer the data transactions to same slave, data
transactions communicate not concurrently but step
by step. Therefore, the total cycle of the flying bus is
obtained as following equation:

C

tot

=a-C, +C, 1

where, G, Gm and G are total cycle, the cycle
that is spent by the flying master, and the cycle
that is spent by the other masters, respectively. a is
the probability that flying master and the other
masters transfer the data transactions to same slave
and obtained as following equation:

n £

“=Z ZPFM&’PMnSp

n=l p=1

2

where, Prusp, and Pumsy are the probabilities that the
data transactions of flying master and the other
masters are transferred to p slave respectively.
Consequently, total cycle G increases in accordance
with the increment of a that is presented in Eq.(2).

SoCE %gt MEE EciY DIAH M2 OF|8A Fx2 Mt HE

(72)

0|=E 2

/

L

Apha

Y _ S L

N

Slave Number

Master Number

Zalgl olAEe} Ch2 nlAsE0| &Y 80|
Boff M&35t= ojo|e| EUMM EHE

Probability that the data transactions of flying
master and the other masters are transferred to
same slave.

ay 3

Fig. 3.

The a graph of figure 3 is obtained from Eq. (2),
provided that the probability that masters transfer
the data transactions, is same as 50% with no
regard to masters and slaves.

For example, when the numbers of master and
slave are all 4, we obtain that o value is about 0.2
from figure 3. Then, we calculate that more than
40% of total cycle decreases from Eq. (1), provided
that the usage proportion of flying master and the
other masters is same. Finally, infroducing the flying
master bus architecture, we expect the remarkable
improvement of bus performance.

2. Dynamic performance analysis using TLM

(1) Transaction level model

In order to implement the TLM (Transaction Level
Model) method of bus architecture, we make the
state machine and the algorithm of normal bus
shown in figure 4(a) and table 2. There are InitSt,
TransferGenSt, ArbitrationSt and TransferExecSt
states in our normal bus architecture model. InitSt is
the initial state that the bus requests of masters do
not happen.

When a master tries to initiate the data
transaction, our state moves on TransferGenSt where
all kinds related with bus

of bus signals

20104 18 X33 =& H 47 2 SD ® A 1

Initst

¢

(a)

Initst

b

{b)
3 4 (@) gEF HAagh () Z2tY Ao A ofF|Hl
XM O AEs
Fig. 4. State machine of bus architecture model:
{a} normal bus and (b) fiying bus.
2 gdl oA olFlEiXel ¢TaE
Table 2. Algorithm of normal bus architecture.

1 normal_bus_model(Arbitration_Type)
2 begin

3 Cur Cycle=0

4 State=IritSt

50 Master Signallall

6 Slave Signallall slavesi=ldie
7: while(Cur. Cycle<Final_Cycleldo

masters}=Idle

J e e e e e
Jf State is InitSt, ---rmmoomom oo 7
e oo #
8 if(State==InitSt)then

9 Idie Gen(Master. Signallselected masters])

10 whiletMaster_Signal ldie_Cyclefalimasters]-—do

11 Cur_Cycle++

12 Detail_Cycles_Cal(NULL NULL InitSt)

13 endwhile

14: Execute, Bus _Model(Master, Signallall masters] NULL,InitSt)

15 State=TransferGenSt

16 endif

/7 777777777777777777777 TTET T T T T T T T T T T T T T T T T T T e e e /l
Jf mmmm o State is TransferGenSt. ———————=-mv //

R B i

(73)

=3 73
17 elseif(State==TransferGenSt)then
18 Req_Gen(Master Signaliselected masters]}
190 Addr_Gen(Master_Signallselected — masters})
200 Data_Gen(Master_Signai[selected masters])
21: Transfer_Signal_Gen(Master Signallselected masters])
220 State=ArbitrationSt
23 endelseif
Jf e e L o [
/s State is ArbitrationSt. ----m----w-mm-oo 7
J] e e - E—— Vi
24" clseif(State==ArbitrationStithen
25 Arbitration(Reqiselected masters],Arbitration. Type)
260 whilel ARBITRATION_CYCLE-~)do
2T Cur_Cycle++
28 Detail_Cycles_Cal(NULL,NULL.ArbitrationSt)
20: Execute_Bus_Model{Master_Signallall masters] NULL,ArbitrationSt)
30 endwhile
31t State=TransferExecSt
32 endelseif
/ / ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e I}i
[l = m s oo State is TransferExecSt. --—-—-=----—=-—- //
i e e e Vi
33 elsether/Stateis TransferExecSt.
34: while((Master_Signal Data_Size[selectedmaster]+Slave_Signal.
Slave_Latencyiselected slavel)——} do
35! Cur_Cycle++
36 Detail Cycles_Cal(Master_Signailall masters],
Slave_Signallall slaves] TransferBxecSt)
37 Execute_Bus Model(Master_Signallall masters},
Slave_Signallall slaves] TransferExecStSt)
38 endwhile
39 Master SignalReqlselected master]=False
4 Master_Signal Grantediselected master]=False
410 if(Master_Signal Reqlsomemasters]==TrueState=ArbitrationSt
42 elseifiMaster_Signal Idie Cyclelsomemasters)==0)State=TransferGenSt
43 elseState=InitSt
440 endif
45 endelse
46 endnorrnal_bus_model(Arbitration_Type)
communication are created Next state is

ArbitrationSt that the master assigning a bus grant
is selected by using the previously defined arbitration
policy. Next, our state moves on TransferExecSt
state that the data of selected master communicate
on the shared bus. After data communication is
finished, our state moves on InitSt, TransferGenSt or
ArbitrationSt state due to the bus request of master.

It directly moves on ArbitrationSt in the case that
the 1T, u
Reglmaster] and idle cycle idle_cycle(master] are all
‘0, TransferGenSt state is selected. For the residue, it
moves on InitSt state. Table 2 gives a full detail of
our normal bus model operation,

Next, we make the state machine and the
algorithm of flying bus shown in figure 4(b) and
table 3. ArbitrationSt and TransferExecSt states are

bus request signal Reglmaster] is

74

73 =2z olag HA opp|HAe gnald
Table 3. Algorithm of flying master bus architecture.

1: flying_bus_model()

2 begin

3 Cur_Cycle=0

4 State=InitSt

5: Master_Signallflving master}=Idle

6 Slave_Signallall slaves}=Idie

/ V4
N mmmmmm e S State is InitSt. --—---- S /
I e
T if(State==InitSt)then

8 Idie_Gen(Master_Signaliflying master))

% while(Master_Signal Idle_Cycle[flyingmaster]—)do

10 Detail_ Cycles, Cal(NULL NULL InitSt)

111 endwhile

Execute_Bus_Model(Master_Signaliflying master] MULL InitSt)
13 State=TransferGenSt

14 endif

/== e Vi
H e S e State is TransferGenSt, ~= -~ wwrmmmmmmmme 4
e e 7
15 elseif(State==TransférGenSt)then

Req_Gen(Master_Signallflying master]}

172 Addr_Gen(Master_Signailflying master]
Data_Gen(Master_Signaliflying master]

19 Transfer_Signal Gen(Master_Signallflying master])
State=ArbitrationSt

211 endelseif

22 elself(State==ArbitrationStithen

2% Arhitration(Reqlselected masters}, Arbitration_Type)

24 while(ARBITRATION_CYCLE--)do

P53 Cur_Cycle++

6 Detail Cycles_Cal(NULLNULL, ArbitrationSt}

2% Execute_Bus_Model(Master_Signallall mastersi NULL, ArbitrationSt)
28 endwhile

2. if(TransferExecStigrantedmaster]&(addrigrantedmmaster]==addriflyingmaster]) then
X State=HoldSt

3 endif

32 elsethen

e State=TransterExecSt

3 endelse

35 endelseif

Vi .

R State is HoldSt.

H —

36: elseif(State=~Holdst)then

3 while(TransferStigrantedmaster))do

% Detail Cycles Cal(NULL NULL, ArbitrationSt}

2 Execute, Bus_ModelMaster_Sigrallflying master] NULL, ArbitrationSt)
40 endwhile

41t State=TransferExecSt

42: endelseif

/7 Vi

/o
elsethen//Stateis TransferExecSt.
while({Master_Signal Data_Size[flyingmaster}+Slave_Signal.

Slave_Latencylselected slave])--) do

5 Detail Cycles_Cal(Master_Signallfiving
slaves) TransferBxecSt)

4 Execute Bus_Model(Master_Signaliflving master),Slave_Signallall slaves],

TransferExecStSt)

47

master], Stave_Signalfall

endwhile

SoCE 9I8t MER E21Y OiAH K2 OFIEA FXo| Hetdt 235

(74)

o3& o

48 Master_SignalReqlflying master}=False
490 State=InitSt

50 endelse

510 endwhile

52: endflying_bus_model()

modified in additional to HoldSt, compared with
normal bus. After ArbitrationSt state, next state
moves on TransferExecSt or HoldSt state. If the
target slave of flying master and the other master is
same, our state moves on HoldSt. For the residue, it
moves on TransferExecSt state. After finishing a
data transfer in TransferExecSt state, our state
directly moves on InitSt state in order to wait the
next communication of flying master.

In this paper, we apply this bus model to AMBA
system that has been used in more than 50%
embedded system of all over the world [1]. The data
length of transaction can be random changed to 1, 4,
8 and 16 shown in figure 5. The idle cycle between
the data transactions of master is also changeable
using random function that is operated with the
range and the mean values of idle cycle. The models
of SDRAM and SRAM controllers are used as slave
component. SDRAM has relatively long latency due
to pre-charge, refresh, row/column access cycles and
so on. However, SRAM has no latency while writing
or reading. In our simulation, though the numbers of
master and slave are changeable, those of master and
slave are set to all 4. In order to accurately confirm
the results, final cycle is set to more than 1,000,000,

The of fixed priority,
round-robin, TDMA and Lottery are applied in our

simulation®®. Fixed priority and
round-robin policies are classical schemes and used
in many commercial SoCs. On the other hand,
TDMA and Lottery is recently developed and can
control a master priority using slot number and

arbitration policies

performance

probability respectively. In our simulation, the master
priority considered, the slot number of each master
from master M1 to master M4 is assigned to 3, 1, 1,
and 1 respectively in TDMA scheme. Similarly, the
probability of a bus use from master M1 to master
M4 is assigned to 3/6, 1/6, 1/6, and 1/6 respectively

20109 18 MAF=F

Data lepgth :
1, 4,8 16

ldle Cycle :
. Random Function .

O 5 A ol ¥ ZEel dole 20l ide Atol
=
=
Fig. 5 Data length and idie cycle of bus architecture
model.
E 4 diolef Zol2t ide AtojEel =A
Table 4. Condition of data length and idle cycle.
Data length Single, Burst
(Random function) (4,6,8,16)
Idle cycle Range 0~30
{Random
Mean 15
function)

in Lottery scheme in order to be compared with the
results of TDMA scheme.

(2) Experimental results
6 the
comparison with flying and normal buses due to the
arbitration policies.

In the simulation until 1,000,000 cycles, we find
that the total bus transaction cycles of flying bus
(FB) and normal bus (NB) are about 700,000 and

500,000 respectively, in the case of SDRAM slave
shown in figure 6{a),

Figure shows dynamic performance

irrespective of arbitration
schemes. Especially, the master M1 assigned by a
flying master can transfer many data transactions
relatively though the
transaction cycles of all masters increase in flying
bus. For instance, the master Ml of a {flying bus

in all arbitration policies,

transfers the data transaction nearly twice as much
transaction cycle in round-robin scheme. This result
is similar to the case of SRAM slave shown in figure
6(b).

The systems of SoCs have one processor at least
to operate the other masters and perform the
software commands. Though the processor is only
one of the masters, the role of a processor is
relatively important and the processing load is also
heavy. Especially, a proportion of processor's usage is

=2 A

(75)

7ASDEHIE 75
Total Transaction Cycle
300000
. 250000
200000
150000 B
| 100000 w2
50000 EM3
o
44
(@)
BMi
B2
3
oy

{b)
a8l 6 (a) SDRAM &0l () SRAM £dlol=e| &
2t ojAE APzl Adt AT Zo| Oo]
el EGEAM AO|E H|H
Fig. 6. Data transaction cycle comparison between flying

and normal bust (@) SDRAM slave, (b} SRAM
slave. {FB: Flying Bus, NB: Normal Bus, FP:
Fixed Priority, RR: Round-Robin).

around 50% in the communication MCU chips, the
performance of which is dependent on the processor
performance. So, it is noticeable that the performance
of master M1 assigned as a flying master
predominates. Finally, we propose that the master M1
of flying bus is employed as important component
like a processor for high performance.

As the total bus transaction cycles of flying bus
(FB) and normal bus (NB) are about 1,000,000 and
800,000 respectively in the case of SRAM slave, an
increase rate relatively slows. That is why the
performance of normal bus is already high, as slave
latency Ls of SRAM is small shown in figure 7.
Conclusively, from data transaction cycle comparison
until 1,000,000 cycles, we find that the performance of

flying bus is superior to that of normal bus around

76

MB(Lottery)
NE(TDNA)
Ne(RR)
MNECFF)

FB otter
FB(TDMA)
FB(RR)
FRIFF)
QE+00

Bus Type

4E+06

SE+08

TE+06 ZE+06

Total Latency

MNELotery)
NETDMAY
NBIR R
MNBIFF)
FB(Lottery)
FBR{TOMAD
FBRRI
FBIFF)
0E+00

Bus Type

1E+06

2E+D8 3EHIS 4E+08

Total Latency

(b}

{a) SDRAM &&olH, (b) SRAM £8lo/Ee]
algl ofAE HATFEel bl HAFT
go[EAl vl

Total latency comparison between flying and
nomal bus: (@) SDRAM slave, (b} SRAM slave.
(FB: Flying Bus, NB: Normal Bus, FP: Fixed
Priority, RR: Round-Robin).

a8 7.

=
=
X
=3

Fig. 7.

40% and 25% about SDRAM and SRAM slaves
respectively.

Figure 7 shows the latency comparison about
normal and flying buses. Then, the total latency is
obtained as following equation:

L,=L,+L +L +L, 3)

where, Lt is total latency of bus system, Lq is the
latency of data transaction, Ls is the latency of target
slave, L. is the latency of bus request and L. i1s the
latency of arbitration. Lg, Ly, L and L. values of
figure 7 are total cycles that summate the latency
cycles of each master. From figure 7, we confirm
that Lg, Ls, L and L. values are unrelated to
arbitration policies and have similar results about all

SoCE 9%t M28 22ty DiAE B2 OfF|8H Fxo| Aokt

{76)

=
a5

Oj=E 9

Bus Etficiency

L Bus Type

a8 8 B2l olAR s{AFEe} oul HAPEE) ¥
A FEM dH|lW

Bus efficiency between flying and normal bus.
{FB Flying Bus, NB: Nommal Bus, FP: Fixed
Priority, RR: Round-Robin).

Fig. 8

arbitration policies,

In the AMBA system, as one cycle is required in
order to transfer one data, the data latency Lg of
figure 7 is same as the data transaction cycle of
figure 6. We find that the difference between figure
T(a) and 7(b) is caused by the slave latency that is
spent while writing or reading slave data.Generally,
SDRAM has long
pre-charge, refresh, row/column access cycles and so

relatively latency due to
on. However, as SRAM has no latency while writing
or reading, more data can be transferred speedily.

The efficiency of bus transaction is obtained as
following equation:

_L
L

tot

A

4

where, A is the efficiency of bus system. From
figure 8 and Eq. (4), we notice that A of flying bus
is larger than that of normal bus around 60% and
43% about SDRAM and SRAM slaves respectively.
These results cause that the total bus request latency
of flying bus is relatively smail. Figure 9 shows the
average bus request cycles until getting a bus grant.
The request cycle of master Ml is only one cycle in
the flying bus, which is independent of slave type
and arbitration scheme. We infer that the master M1
assigned flying master is easy to get a bus grant in

20108 18 EXi3%E =X M 472 SDEHM1 =

Average request cycle

208

77

spite of heavy traffic situation. On the other hand, the
master M4 having the lowest priority takes many
request cycles in the fixed priority of normal bus,
shown in figure 9, which leads to the starvation
phenomenon hardly getting a bus grant for long time.
However, Introducing flying master, we can decrease
the request cycle of master M4 from 208 to 34 in the
case of SDRAM slave and from 35 to 14 in that of
SRAM slave.

The request cycle of round-robin priority is nearly

equal except the case of master M1 in flying bus and
Average request cycle that of TDMA and Lottery policies similarly increase
B0 e e due to master priority. Finally, we find that the
:g request cycle of flying bus is outperformed as well
;g -g - - e Y as the transaction cycle meaning a transferring
. ‘ . © wye
10 of . - amount.
SF L BT Y e " e
ng\ & &‘?’ E P P oS @ By So,.we notice that tl ‘e g?ap S ‘aI.:aes 0 1gure
F & ‘&@0 “<§’ <bqvcr"“ @,o& are decided only by arbitration policies despite the
& < o .
,,,,,,,,,,,,, striking difference of request cycle between SDRAM
13 9. {a) SDRAM &&lol2 (b SRAM Z#lol2 &
ol R WAl o B QF Ab|Z blm IV. Conclusion
Fig. 9. Average request cycle due to arbitration policies
in (a) SDRAM and (b} SRAM slave case (FB: . . .
Flying Bus, NB: Normal Bus, FP: Fixed Priorty, We propose the flying master bus architecture that
RR: Round-Robin). is capable of transferring the multiple data
transactions simultaneously to realize high
¥ 5 gy A drADp Zejol afAE a{A gAlo] £ MiE BT
Table 5. Total performance comparison between normal and flying buses.
Ttem Total transaction cycle Total bus efficiency Total request cycle
Slave
ype SDRAM SRAM SDRAM SRAM SDRAM SRAM
Bus type Nermal | Flying | Nommal | Flying | Normal | Flying | Nommal | Flying | Normal | Flying | Normal | Flying
bus bus bus bus bus bus bus bus bus bus bus bus
Fixed ~)
L. 506868 | 707951 815041 1008818 015 0.24 0.28 0.40 256 59 60 29
pnority
Round-r . e
obin 505614 | 707866 815430 | 1009195 0.15 0.24 0.28 0.40 101 52 48 28
TDMA | 507661 | 708640 815387 | 1009747 0.15 0.24 0.28 0.40 100 51 48 27
Lottery | DOSI&3 | 707294 | 815212 | 1009019 0.15 0.24 0.28 040 90 51 48 27

(77)

78 SoCE 98t M2 Z2tY OtAH M4 OFIEY 729 XMetst 45 o|=8 o

performance SoC. MR AN
Table 5 summarizes the total performance) of = ¥ (&Y

HaARESE =7

comparison between normal and flying buses. =]
A4578 SDHE A4s FE

Compared items are transaction cycle, bus efficiency
and request cycle. Applying the flying bus, we find
that 25~40% of transaction cycle and 43~60% of
bus efficiency are increased and 43~77% of request

cycle is decreased.
1 24 H 2R3
A AF3 =EA
A467 SDE A2% F=

Conclusively, we conclude that the proposed flying
master bus architecture is promising as the leading
candidate of the bus architecture in the aspect of
performance and efficiency.

Reference

[1] ARM, Limited. AMBA Specification, 1999.

[2) IBM, Ammonk, NY, “CoreConnect hus
architecture,” 1999.

(3] Sonics, Inc, Mountain View, CA, “Silicon
micronetworks technical overview,” 2002.

[4] K Lee and Y. Yoon, “Architecture exploration
for performance improvement of SoC chip based
on AMBA system,” ICCIT, pp.739-744, 2007.

[5) K. Lahirii, A. Raghunathan, and G
Lakshminarayana, “The LOTTERYBUS On-Chip
Communication Architecture,” IEEE Trans. VLSI
Systems, vol.14, no.6, 2006.

6] M. Jun, K Bang, H. Lee and E Chung,
“Latency-aware bus arbitration for real-time
embedded systems,” IEICE Trans. Inf. & Syst,,
vol E9O-D, no.3, 2007.

[71 Y. Xu, L. Li, Ming-lun Gao, B.Zhand, Zhao-yu
Jiand, Gao-ming Du, W. Zhang, “An Adaptive
Dynamic Arbiter for Multi-Processor SoC”,
Solid-State and Integrated Circuit Technology
International Conf., pp.1993-1996, 2006.

[8] Chiung-San Lee, “High-Fair Bus Arbiter for
Multiprocessors,” IEICE Trans. Inf. & Syst,
vol.ERO-D, no.1, 1997.

(78)

