DOI QR코드

DOI QR Code

치과용 레진 시멘트의 중합 수축률 특성에 관한 연구

In vitro study of Polymerization shrinkage-strain kinetics of dental resin cements

  • 김태훈 (서울대학교 치의학대학원) ;
  • 양재호 (서울대학교 치의학대학원 치과보철학교실) ;
  • 이재봉 (서울대학교 치의학대학원 치과보철학교실) ;
  • 한중석 (서울대학교 치의학대학원 치과보철학교실) ;
  • 김성훈 (서울대학교 치의학대학원 치과보철학교실)
  • Kim, Tae-Hoon (School of Dentistry, Seoul National University) ;
  • Yang, Jae-Ho (Department of Prosthodontics, Seoul National University Dental Hospital) ;
  • Lee, Jai-Bong (Department of Prosthodontics, Seoul National University Dental Hospital) ;
  • Han, Jung-Suk (Department of Prosthodontics, Seoul National University Dental Hospital) ;
  • Kim, Sung-Hun (Department of Prosthodontics, Seoul National University Dental Hospital)
  • 발행 : 2010.01.29

초록

연구 목적: 치과용 레진시멘트의 중합 수축은 수복물이 치아에 정확하게 합착되는 것을 방해하고, 내부 응력의 원인이 되어 치아에 여러 문제점을 일으킬 수 있다. 이러한 임상적인 문제점을 줄이기 위해서 사용하는 치과용 레진시멘트의 중합 수축률에 대해 아는 것이 중요하다. 본 연구에서는 상업적으로 이용되고 있는 몇 가지 레진시멘트의 시간에 따른 중합 수축률을 측정, 서로 비교하고자 하였다. 연구 재료 및 방법: 3종류의 자가 중합형 레진시멘트(Fujicem, Superbond, M bond)와 3종류의 이원 중합형 레진시멘트(Maxcem, Panavia F, Variolink II) 별로 각각 5개의 시편을 이용하였다. 각 재료의 중합 수축률은 Bonded disk method를 이용하여 측정하였다. 안쪽 직경 16 mm, 두께 1 mm 의 동으로 제작된 링을 유리판 ($74\;mm\;{\times}\;25\;mm\;{\times}\;3\;mm$) 위의 중앙에 위치시켜 부착하고, 그 유리판 중앙에 실험 재료를 구 형태로 만들어 올리고, 다른 유리판으로 눌러서 원판 형태 (직경 8 mm, 두께 1 mm)의 시편을 제작하였다. 시편의 중합 수축률은 재료가 중합이 시작된 후 120분동안, $23^{\circ}C$에서 측정하였다. 시간에 따른 수축량에 대한 kinetics curve를얻고, 각 실험 재료의 수축률의 평균값 (%)과 표준편차를 구한 뒤, one-way ANOVA 및 Scheffe post hoc test를 유의수준 0.05 에서 처리하여 그 결과 값을 비교하였다. 결과: 1. 실험에 사용된 Fujicem, Maxcem, M bond, Panavia F, Superbond, Variolink II 은 중합이 시작 된 120 분 후의 중합 수축률이 각각 3.72%, 4.19%, 4.13%, 2.44%, 7.57%, 2.90%의 값을 보였다. 2. Panavia F가 중합 수축률이 가장 작았고, Superbond가 중합 수축률이 가장 컸다 (P<.05). 3. Maxcem 과 M Bond 간에는 유의한 차이가 없었다 (P>.05). 4. 6종류의 레진 시멘트에서 90% 이상의 대부분의 수축은 중합이 개시된 30분 내에 거의 일어났다. 결론: 자가 중합형 레진시멘트의 혼합 후 나타나는 중합 수축이 이원 중합형 레진시멘트보다 천천히 일어나지만, 혼합 120분 뒤의 중합 수축은 이원 중합형 레진 시멘트 보다 유의할 정도로 높았다. 치과용 레진시멘트의 중합 수축은 혼합한 후 30 분내에 대부분 일어난다.

Purpose: The shrinkage of dental resin cement may cause several clinical problems such as distortion that may jeopardize the accurate fit to the prepared tooth and internal stress within the restorations. It is important to know the polymerization shrinkage-strain of dental resin cement to reduce clinical complications. The purpose of this study was to investigate the polymerization shrinkage-strain kinetics of six commercially available dental resin cements. Material and methods: Three self-cure resin cements (Fujicem, Superbond, M-bond) and three dual-cure resin cements (Maxcem, Panavia-F, Variolink II) were investigated. Time dependent polymerization shrinkage-strain kinetics of the materials were measured by the Bonded-disk method as a function of time at $23^{\circ}C$, with values particularly noted at 1, 5, 10, 30, 60, 120 min after mixing. Five recordings were taken for each materials. The data were analyzed with one-way ANOVA and Scheffe post hoc test at the significance level of 0.05. Results: Polymerization shrinkage-strain values were 3.72%, 4.19%, 4.13%, 2.44%, 7.57%, 2.90% for Fujicem, Maxcem, M bond, Panavia F, Superbond, Variolink II, respectively at 120 minutes after the start of mixing. Panavia F exhibited maximum polymerization shrinkage-strain values, but Superbond showed minimum polymerization shrinkage-strain values among the investigated materials (P < .05). There was no significant differences of shrinkage-strain value between Maxcem and M bond at 120 minutes after the start of mixing (P > .05). Most shrinkage of the resin cement materials investigated occurred in the first 30 minutes after the start of mixing. Conclusion: The onset of polymerization shrinkage of self-cure resin cements was slower than that of dual-cure resin cements after mixing, but the net shrinkage strain values of self-cure resin cements was higher than that of dual-cure resin cements at 120 minutes after mixing. Most shrinkage of the dental resin cements occurred in the first 30 minutes after mixing.

키워드

참고문헌

  1. Davidson CL, de Gee AJ. Relaxation of polymerization contractionstresses by flow in dental composites. J Dent Res 1984;63:146-8. https://doi.org/10.1177/00220345840630021001
  2. Puckett AD, Smith R. Method to measure the polymerization shrinkage of light-cured composites. J Prosthet Dent 1992;68:56-8. https://doi.org/10.1016/0022-3913(92)90285-I
  3. Suliman AH, Boyer DB, Lakes RS. Polymerization shrinkage of composite resins: comparison with tooth deformation. J Prosthet Dent 1994;71:7-12. https://doi.org/10.1016/0022-3913(94)90247-X
  4. Lee IB, Cho BH, Son HH, Um CM. A new method to measure the polymerization shrinkage kinetics of light cured composites. J Oral Rehabil 2005;32:304-4. https://doi.org/10.1111/j.1365-2842.2004.01414.x
  5. Kim SH, Watts DC. Polymerization shrinkage-strain kinetics of temporary crown and bridge materials. Dent Mater 2004;20:88-95. https://doi.org/10.1016/S0109-5641(03)00101-5
  6. Feilzer AJ, de Gee AJ, Davidson CL. Curing contraction of composites and glass ionomer cements. J Prosthet Dent 1988;59:297-300. https://doi.org/10.1016/0022-3913(88)90176-X
  7. Rees JS, Jacobsen PH. The polymerization shrinkage of composite resins. Dent Mater 1989;5:41-4. https://doi.org/10.1016/0109-5641(89)90092-4
  8. Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent Mater 1991;7:281-7. https://doi.org/10.1016/S0109-5641(05)80030-2
  9. Cook WD, Forrest M, Goodwin AA. A simple method for the measurement of polymerization shrinkage in dental composites. Dent Mater 1999;15:447-9. https://doi.org/10.1016/S0109-5641(99)00073-1
  10. Smith DL, Schoonover IC. Direct filling resins: dimensional changes resulting from polymerization shrinkage and water sorption. J Am Dent Assoc 1953;46:540-4. https://doi.org/10.14219/jada.archive.1953.0089
  11. Bowen RL. Properties of a silica-reinforced polymer for dental restorations. J Am Dent Assoc 1963;66:57-64. https://doi.org/10.14219/jada.archive.1963.0010
  12. Dennison JB, Craig RG. Physical properties and finished surface texture of composite restorative resins. J Am Dent Assoc 1972;85: 101-8. https://doi.org/10.14219/jada.archive.1972.0284
  13. Bandyopadhyay SA. A study of the volumetric setting shrinkage of some dental materials. J Biomed Hater Res 1982;16:135-44 https://doi.org/10.1002/jbm.820160206
  14. Goldman M. Polymerization shrinkage of resin-bonded restorative materials. Aust Dent J 1983;28:156-61. https://doi.org/10.1111/j.1834-7819.1983.tb05272.x
  15. Suh BI, Feng L, Wang Y, Cripe C, Cincione F, de Rjik W. The effect of the pulse delay cure technique on residual strain in composites. Compendium 1999;20:4-14.
  16. de Gee AJ, Feilzer AJ, Davidson CL. True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater 1993;9:11-4. https://doi.org/10.1016/0109-5641(93)90097-A
  17. Watts DC, Marouf AS. Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterials. Dent Mater 2000;16:447-51. https://doi.org/10.1016/S0109-5641(00)00043-9
  18. Venhoven BAM, de Gee AJ, Davidson CL. Polymerization contraction and conversion of light-curing BisGMA-based methacrylate resins. Biomaterials 1993;14:871-5. https://doi.org/10.1016/0142-9612(93)90010-Y
  19. Bandyopadhyay SA. A study of the volumetric setting shrinkage of some dental materials. J Biomed Mater Res 1982;16:135-44. https://doi.org/10.1002/jbm.820160206
  20. Hay JN, Shortall AC. Polymerization contraction and reaction kinetics of three chemically activated restorative resins. J Dent 1988;16:172-6. https://doi.org/10.1016/0300-5712(88)90031-0
  21. Wall AWG, Mccabe JF, Murray JJ. The polymerization contraction of visible-light activated composite resins. J Dent 1988;16:77-81.
  22. Silikas N, Al-Kheraif A, Watts DC. Influence of P/L ratio on shrinkage-strain kinetics during setting of PMMA/MMA biomaterial formulations. Biomaterials 2005;26:197-204. https://doi.org/10.1016/j.biomaterials.2004.02.028
  23. Turner RC, Atkins PE, Ackley MA, Park JB. Molecular and macroscopic properties of PMMA bone cement: Free radical feneration and temperature change versus mixing ratio. J Biomed Mater Res 1981;15:425-32. https://doi.org/10.1002/jbm.820150312
  24. Lang NP, Kiel RA, Anderhalden K. Clinical and microbiological effects of subgingival restorations with overhanging or clinically perfect margins. J Clin Periodintol 1983;10:563-78. https://doi.org/10.1111/j.1600-051X.1983.tb01295.x
  25. Sorensen SE, Larsen IB, Jorgensen KD, Gingival and alveolar bone reaction to marginal fit of subgingival crown margins. Scand J Dent Res 1986;94:109-14.
  26. Felton DA, Kanoy BE, Bayne SC, Wirthman GP. Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent 1991;65:357-64. https://doi.org/10.1016/0022-3913(91)90225-L