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The Histories of the Mathematical Concepts of Infinity
and Limit in a Three—fold Role

Kim, Dong Joong”

The purpose of this study is to classify a three-fold role of the history of
mathematics through epistemological analysis. Based on the history of infinity and limit,
the “potential infinity” and “actual infinity” discourses are described using four different
historical epistemologies. The interdependence between the mathematical concepts is also
addressed. By using these analyses, three different uses of the history of mathematical
concepts, infinity and limit, are discussed: past, present, and future use.

l. INTRODUCTION

History of mathematics has great implications for
the teaching and learning of mathematics. First and
foremost, what history offers the students and teachers
2001).

Moreover, the role of history of mathematics in

of mathematics is motivation (Kleiner,
mathematics education is multifaceted. For instance,
the role of history in the teaching of algebra may be
different from the role of history in the learning of
geometry (Fauvel & van Maanen, 2001). This study
attempts to answer a specific question raised from the
way history of mathematics can be used in mathematics
education. The specific question about the role of history
of mathematics is: How can mathematics educators
use the history of mathematics? Such investigation
may provide insight into the role of history of
mathematics with implications for student leaming and

teacher education.
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In order to have a better understanding of how the
mathematics education researcher use the history of
mathematics, I will describe the interdependence
between the mathematical concepts of infinity and limit
in the history of mathematics through four different
epistemological developments: intuitive finitism,
infinitism in the context of infinitesimals, infinitism
in the context of variables, and actual infinitism. First,
I will base intuitive finitism on ancient Greek thinking.
Then I will discuss infinitism in the context of
infinitesimals, which was anchored in the 17th and
18th centuries, followed by infinitism in the context
of variables demonstrated by Cauchy and Weierstrass.
Next, actual infinitism expressed by Cantor and
Dedekind will be discussed. Finally, on the basis of
the four different epistemological analyses, 1 will
present the idea that there are three different types

of role of the history of mathematics in mathematics

education research.
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[I. INTUITIVE FINITISM

The story of infinity begins with the ancient Greeks,
and leads to the notion of intuitive finitism. The Greek
word ‘peras’ tefers to limit or bound (Moore, 1990).
The Greek word for infinity is ‘apeiron.” The word
‘apeiron’ means no ‘peras,” unbounded, indefinite, or
undefined (Boyer, 1949; Moore, 1990; Rucker, 1995).
The ancient Greeks used the concept of infinity with
observations such as endless time, unendingly
subdivided space and time, and unbounded space
(Allen, 1999). In the thinking of the ancient Greeks,
a finite thing is more highly valued than an infinite
thing, because infinity is valueless and cannot be
formed, unlike finiteness. For instance, the Pytha-
goreans considered natural numbers as the key to
everything (Moore, 1990; Rucker, 1995). They created
the cosmic theory of (natural) numbers based on the
principle of ‘peras.” Plato (427 BC-347 BC) also thought
that the apeiron was the indeterminate beyond a given
range. Thus the apeiron was valueless, but became
valuable, when the peras was imposed on it in an
ordered way (Moore, 1990).

In ancient Greek consciousness, infinity was
something to be kept out of mathematics at any cost
{Maor, 1987). This avoidance on the part of ancient
Greek mathematicians was influenced by the infamous
paradoxes of Zeno (Rotman, 1993). One of Zeno’s
paradoxes is the paradox of the runner. Suppose that
a runner wants to move from point A to point B.
To get to point B, he must pass the midpoint between
the two points, then pass the three-quarter point, and
so on ad infinitum. Zeno’s argument was that the runner
can never finish a race because he always has to reach
the midpoint of the race’s remaining segment, and

then the midpoint of the next remaining segment, and

so on. Another effect of Zeno’s arguments is Aristotle’s
distinction between a potential infinity and an actual
infinity (Rotman, 1993}.

Because Aristotle thought that Zeno’s paradox of
the runner was based on the actual infinity, he created
a possible alternative to actual infinity, the notion of
the potential infinite. The potential infinite means that
the infinite exists potentially but not in actuality. For
instance, the progression of integers is potentially
infinite because we can always add one to get a larger
number. Since no single infinite set of integers is ever
completed, there is only an infinite process trying to
create it. Infinity, therefore, existed not as a completed
form but as a potential construct in ancient Greek
consciousness. This ancient Greek conception became
the source of the potential infinite as one of the
conceptions in the current perspective of infinity.

For the ancient Greeks, such understandings of
infinity dominated mathematical thoughts. Infinity was
perceived as an incomplete state and something which
is valueless and cannot be experienced in the long
run. This epistemology can be called as intuitive
finitism, because it was based on geometrical intuition
and excluded infinite processes. In intuitive finitism,
infinity does not exist in actuality, but rather as a
potential construct based on the principle of ‘peras.’
Thus, there is no concept of limit as the completion
of an infinite process in this epistemology. Although
there is the notion of bounded processes, there is no
concept of limit as a concrete bounding entity. Based
on the paradoxes of Zeno and others, skepticism about
actual infinity prevented Greek mathematicians from
developing the notion of limit.

Because the concept of actuai infinity made the
ancient Greek mathematicians skeptical, they seemed

to reject it in order to maintain the establishment of

- 294 -



a firm science, geometry. For instance, to prove a
geometric problem, the Greek mathematicians
developed the method of exhaustion without carrying
out an infinite number of steps. One such example
is the idea of Eudoxus (408 BC-355 BC) to escape
the usage of infinity. He used the method of exhaustion
in the proof of the following proposition: If the areas
of the circles are A and A’ and their diameters are
d and d’ respectively, then A : A” = & : (&)’ {Boyer,
1949, p. 34). First of all, he supposed that the proportion
was not true. Then, by using reduction to absurdity,
he established the truth of the proposition based on
a contradiction. He did not consider the concept of
infinity in this proof. However, he did not define the
area of a circle in the proof and needed to expect
the limit value (d) in advance. The above shortcomings
in his proof originated because the concept of limit
was foreign to his epistemology of mathematics.
At the end of ancient times, prevalent philosophy
about infinity shifted from finitism to infinitism through
the influence of Christianity. In the Middle Ages, based
on Christian theology, infinity as a divine property
was actively valued, and philosophers valued it more
than a finite entity. By considering infinity as an object
of recognition, medieval thinkers tried to explain the
notion of infinity with logical concepts. However, based
on scholastic philosophy, most medieval concep-
tualizations were not apt to handle the infinitude of
any entities other than God (Rucker, 1995). Thus
medieval thinkers believed that there was no actually
infinite collection in the created world (Rucker, 1995).
But, one interesting paradox to the medieval thinkers
was the relationship between all points on the
circumferences of two small and large circles that share
a common center. There are two infinities that are

different in the sense of inclusion and the same in

the sense of one-to-one correspondence, by drawing
a radial segment from the shared center point to the

larger circle {Rucker, 1995).

fIl. INFINITISM IN THE CONTEXT OF
INFINITESIMALS

Infinitism in the context of infinitesimals which was
anchored in the 17th and 18th centuries involves the
notion of the potentially infinite. The limit concept
was included but not clarified. With the developments
of astronomy and dynamics in the 16th century, there
was an urgent need to find the area, volume, and length
of a curved figure. In the 17th century, to find the
areas of fan-shaped figures and the volumes of solids
such as apples, Kepler used infinitesimal methods
(Boyer, 1949). For instance, he showed the volumes
of solids by considering them as composed of an infinite
number of infinitesimal generating elements. Interes-
tingly, his infinitesimal methods were well represented
in the subject of the measurement of wine casks to
solve uncertainties in measuring their volume (Boyer,
1949). However, Kepler did not seem to distinguish
a proof by infinitesimal elements from a proof by the
method of exhaustion (Boyer, 1949, p. 109).

While Kepler regarded the infinite as having
metaphysical significance, Cavalieri did not argue it
explicitly (Boyer, 1949). Cavalieri introduced the word
indivisibles. He used the word indivisible to charac-
terize infinitely small lines and areas without thickness
for the investigation of an area and a volume respectively
(Boyer, 1949; Kleiner, 2001). He did not focus on
the total sum of indivisibles. Rather, he focused on
the correspondence between two indivisibles of two

figures (Boyer, 1949, p. 118). In fact, Cavalieri never
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explained how the sum of indivisibles without thickness
could compose an area or volume (Boyer, 1949, p.
122). Both Kepler and Cavalieri regarded aréa and
volume as geometric concepts rather than numerical
values.

The above epistemology is called as infinitism in
the context of infinitesimals. In infinitism in the context
of infinitesimals, infinitesimals mean infinitely small
quantities as tools to be used in calculus. In other
words, they were used to find the areas and the volumes
as made up of an infinite number of small quantities.
These epistemologists concentrated on the development
of the infinitesimal calculus pragmatically. Although
the concept of limits was involved in the infinitesimal
calculus, it had not been clarified.

Later, Pascal demonstrated the method of
infinitesimals as the concept of the total sum. In other
words, he established that the total sum of infinitesimal
lines or areas is the figure’s or shape’s area or volume,
respectively. These concepts of infinitesimals became
the basis of calculus. Leibniz developed the calculus
based on infinitesimals (Kleiner, 2001; Moore, 1990).
He also developed a theory of infinite series. In addition,
Leibniz changed infinitesimal geometry to infinitesimal
analysis as a type of symbolic mathematics. However,
Leibniz failed to construct a foundation in the analysis
of infinitesimals (Boyer, 1949; Kleiner, 2001). In other
words, he recognized mathematical truth, but could
not establish the formal foundations. Because
mathematicians found the useful infinitesimal calculus
during the 17th and 18th centuries, they had no
compelling reason to construct firm theoretical
foundations for their subject (Kleiner, 2001).

Throughout the 18th century, no certain conceptual
bases of the calculus emerged (Edwards, 1979; Kleiner,

2001). Thus, criticism and controversy existed in the

process of the development of calculus. For instance,
Euler achieved a conceptual development by making
the notion of function central in calculus around the
mid-18th century (Kleiner, 2001). He also pointed out
inconsistencies in infinite series. As an example, if
we consider the infinite sum (1-x)/( 1+x)2 =
1-3x+5x’-7x*+... and substitute 1 instead of x, then
the result 1-3+5-7+..= 0 (Boyer, 1949). Another
example is the result, 1-1+1-1... = 1/2, if the infinite
sum 1/(1+x) = Lx+x™x’+.. is considered when x equals
1.

At the end of the 18th century, there were also
inconsistencies and absurdities about infinitesimal
magnitudes (Rotman, 1993). There was a lack of rigor
to make interpretations of calculus in terms of
infinitesimals. For instance, Berkeley criticized the use
of infinitesimals in calculus. He pointed out an
inconsistency in finding the derivative nx""of x" from
the increment, (x+d)" = mx"'d + 12n(n-1x"’d" + ...
+ d', by first dividing by d, supposing that d is non-zero
and then setting d equal to zero (Edwards, 1979, p.
294). Therefore, mathematicians faced a serious crisis
within mathematics due to the inconsistencies and

absurdities in calculus.

IV. INFINITISM IN THE CONTEXT OF
VARIABLES

In infinitism in the context of variables by Cauchy
and Weierstrass, the notion of limit emerged as the
underlying concept of calculus needed to remedy
uncertainties and make the infinitesimal calculus more
rigorous. Infinity was also the potential infinite in this
epistemology. Cauchy and Wejerstrass were pioneers

for a movement toward a rigorous calculus in the
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beginning of the 19th century (Boyer, 1949; Kleiner,
2001; Moore, 1990; Rotman, 1993).

It was during the 19th century that the concept of
limit became the basis of calculus (Kleiner, 2001).
In Cours d’analyse, Cauchy defined the limit concept
as follows: “When the successive values attributed to
a variable approach indefinitely a fixed value so as
to end by differing from it by as little as one wishes,
this last is called the limit of all the others (Boyer,
1949, p. 272).” Even though Cauchy did not define
the limit using the modern epsilon-delta definition,
he used epsilon-delta arguments in the various proofs
involving limits (Kleiner, 2001). According to Cauchy,
the limit is a number, whereas a derivative, an integral,
and an infinite series are the limits (Hairer and Wanner,
1995). With the basis of the arithmetical definition
of limit, Cauchy considered infinitesimals as no more
than variables based on the function concept of relations
between variables (Boyer, 1949). Cauchy defined an
infinitesimal as a variable whose limit is zero (Edwards,
1979; Kleiner, 2001).

To make the basis of the calculus more rigorous,
Weierstrass considered a precise algebraic limit
definition instead of Cauchy’s intuitive conception
(Kleiner, 2001). Weierstrass’s definition of the limit
of a function is as follows: “The number L is the
limit of the function f(x) for x = xo if, given any arbitrarily
small number, epsilon, another number, delta, can be
found such that for all values of x differing from xo
by less than delta, the value of f(x) will differ from
that of L by less than epsilon”(Boyer, 1949, p. 287).
Weierstrass replaced infinitesimals with his epsilon-
delta formulation in calculus (Boyer, 1949; Kleiner,
2001). According to the epsilon-delta definition of
Weierstrass, the limit of a continuous variable became

the fundamental concept of the calculus without

infinitesimals. In fact, Cauchy’s and Weierstrass’s
fundamental ideas were based on the method of
exhaustion, because they thought of a curved figure
as the limit of a sequence of polygons (Moore, 1990).
‘ To Cauchy and Weierstrass, the infinite indicated
the potential infinite of Aristotle (Boyer, 1949). The
concept of limit became the fundamental concept of
calculus based on the epsilon and delta variables in
infinitism in the context of variables. Limits, in this
epistemology, became an arithmetical concept rather
than a geometrical concept (as they were in infinitism
in the context of infinitesimals). The concept of the
limit which is based on variables became the rigorous
underlying concept of calculus in the former
epistemology, while uncertainties and inconsistencies
of infinitesimals are the basis of the infinitesimal

calculus in the latter epistemology.

V. ACTUAL INFINITISM

In the epistemology of actual infinitism demonstrated
best by Cantor and Dedekind, infinity is the actual
infinite rather than a potential construct, unlike the
three previous epistemologies. Limit is also the
fundamental concept of calculus. In the view of Cauchy
and Weierstrass, an infinitesimal was a variable whose
limit is zero and the limit concept involved only the
definition of number (Boyer, 1949). However, this
definition implicitly presupposes the existence of
infinite sets (Boyer, 1949).

In order to complete Weierstrass’ foundations of
arithmetic, Dedekind and Cantor developed the theory
of infinite sets (Boyer, 1949). In other words, during
the last thirty years of the 19th century, the construction

of the real number system was the main progress for
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the rigorization of calculus (Edwards, 1979). Without
a full understanding of the real number system, it was
impossible to construct firm foundations of calculus.
One such example is an infinite sequence of rational
numbers which can have the limit as an irrational
number. Dedekind thought that the difficulty in the
limit concept would be solved by understanding
irrational numbers arithmetically (Boyer, 1949; Moore,
1990). Therefore, the existence of the limit was an
important issue in 1872 (Boyer, 1949).

To complete the definition of real numbers, Dedekind
defined that “A system S is said to be infinite when
it is similar to a proper part of itself; in the contrary
case S is said to be a finite system” (Boyer, 1949,
p. 296). In this definition, Dedekind handled the actual
infinite instead of the potential infinite. Based on the
continuity property of the real number system, Dedekind
constructed the real numbers, whereas Cantor based
his construction on the concept of Limit (Edwards, 1979).
Cantor and Dedekind considered the set of rational
numbers as the starting point for the construction of
the set of all real numbers (Edwards, 1979).

However, Cantor was not satisfied with only defining
infinite sets. With the developments of the equivalence
of two infinite sets and degrees of infinity, Cantor
comprehended infinite sets as something actually
existing in front of his eyes and compared two infinite
sets based on degrees of infinity. Beyond our intuition,
Cantor opposed the idea that there is no actual infinity.
Interpretation of infinity as a potentiality rather than
an actuality dominated mathematics until the Cantorian

revolution in the 19th century. Though Cantor

discovered the property of actual infinity, the result

was shocking to him. In his letter to Dedekind, Cantor
expressed his difficulties well. He exclaimed, "I see

it, but I don’t believe it!” (Aczel, 2000; Maor, 1987).

Dedekind and Cantor considered the limit of a
continuous variable as the fundamental concept of
calculus, like Weierstrass (Boyer, 1949, p. 298).
However, they developed the theory of the infinite
sets as an actuality rather than a potenﬁality to complete
Weierstrass’ foundations of calculus. This suggests an
epistemic stance of actual infinitism because infinity
is seen as not only the potential infinite but also the
actual infinite. Since infinity in infinitism in the context
of variables is always related to the concept of variables,
it is an infinite in the process of production, that is,
a potential infinity. Therefore, the concept of the actual
infinity does not exist in this epistemology. To handle
the difficulties in the limit concept such as the existence
of the limit, the theory of the actual infinity was:
developed in actual infinitism. The epistemology by
Cauchy and Weierstrass was augmented by actual
infinitism, based on Dedekind’s continuum and

Cantor’s theory of the actual infinite (Rotman, 1993).

VI. CONCLUSION

Through the four different epistemologies -

intuitive finitism, infinitism in the context of
infinitesimals, infinitism in the context of variables,
and actual infinitism - the interconnectedness between
infinity and limit and their historical development was

discussed. In the first three of these epistemologies,

infinity as a process can be seen as it is considered

a potential construct in the process of production. In
actual infinitism, the actual infinite can be observed
as an object: an unproblematic completed infinity. If
we take infinity as the potential infinite, the idea of
a limited process can be examined. If we consider

infinity as the actual infinite, the limit of these infinite
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processes can be scrutinized as something actually
existing. These developments not only constructed firm
foundations of calculus, but also completed the
definition of real numbers,

The historical analysis of infinity and limit can be
presented with a three-fold role of past, present, and
Sfuture for the mathematics education researcher. First,
the concepts of infinity and limit need to be seen from
the perspective that focuses on where the words came
from and how they have been developed for the past
use. For instance, the first use of the term “infinity”
is generally credited to the ancient Greeks and they
kept it out of mathematics for consistency until the
Middle Ages. Then, the concept of infinity has been
developed through the four different stages in
conjunction with the concept of limit. Although it is
a simple statement without a mathematical concept,
some students and teachers gain some good insights:
mathematics is an ongoing field; some mathematical
concepts were rtejected in order to maintain the
establishment of mathematics in the past, but they are
now accepted in a more rigorous development of
mathematics. In addition, the different historical
developments of understanding infinity and limit help
students and teachers to make more sense of
mathematics, humanize the subject, recognize the
continuous and  continuing development of
mathematics, and foster an appreciation of the
multicultural inberitance and culturally dependent
nature of the subject. The four different developmental
stages of infinity and limit can also show how difficult
it has been to expand mathematical concepts as they
are through epistemological analysis. Students and
teachers are often faced with the problems and the
results without having been given time to think about

difficulties behind the problems in the history of

mathematics.

Generally, numerous researchers have noted the past
use of the history of mathematics through experimental
data for the field of mathematics education. For instance,
mathematics history lessons helped students to
humanize the subject and make it more accessible to
them (Bartolome, 1994), In addition, the history of
mathematics helped students develop more positive
attitudes toward mathematics as well as learning
mathematics (McBride & Rollins, 1977; Furinghetti,
1997; Troutman & McCoy, 2008). Students also tended
to have a deeper conceptual understanding of the topics
with knowledge of the history of mathematics which
helped them understand how mathematical thinking
patterns behind the discipline were developed
(Bartolome, 1994). However, how to make a plan for
introducing the history of mathematics in a teaching
sequence including steps from informal to formal
mathematics is still a big question unanswered to
teachers and mathematics education researchers,
especially for advanced mathematical concepts such
as infinity and limit.

Second, in order to utilize the history of mathematics
for the presen: use of mathematics education research,
it may provide insight into current mathematical
structures. For example, in the development of the
discourse on infinity, two different types of discourse
have been appeared in the history of mathematics. The
“potential infinity”discourse which is grounded in the
potential infinite as a process is one thing. The “actual
infinity” discourse which is derived from the actual
infinite as an object is another. The concept of potential
infinity dominated mathematics until the Cantorian
revolution in the 19th century because actual infinity
had been banned from mathematics to preserve the

consistency of our usual Jogic. As evolved in the history

- 299 -



of mathematics, the “potential infinity” discourse is
developed with our intuitions and general intellectual
development in the stages of learning infinity. However,
the “actual infinity” discourse is beyond our intuitions
because the concept of actual infinity conflicts with
our intuitive understanding of infinity. The historical
dimension described above to the learning of infinity
brings out two important developmental stages in a
dialectical way. This kind of analysis -of mathematical
structure from the history of mathematics can shed
an additional light on current perspectives on
mathematical generalizations and abstractions.

For instance, some research focused on cognitive
obstacles of learning infinity and limit in order to
approach student difficulties of learning on these
concepts. Some of those (Fischbein, Tirosh, & Hass,
1979; Tall, 1992 Tirosh, 1992) emphasized the
importance of intuition. Tall’s work on intuition of
infinity (Tall, 1992) and the work of Fischbein and
colleagues work on infinity (Fischbein et al., 1979)
are representative. Their main point is that a main
source of difficulties is the intuitions students use.
According to Fischbein and colleagues (1979), intuition
is "direct, global, self-evident forms of knowledge”.
One of the intuitions of infinity is that the whole includes
its parts because it contains the part. Another example
is a concept of infinity as endlessness. Fischbein and
colleagues address that the resistance of those intuitions
continues through age and teaching influences, starting
with age 12. They believe that the intuition of infinity
is affected by the schema at the stage of intellectual
development.

Finally, as for the future use of mathematics
education, it should be noted that the histories of the
mathematical concept of infinity and limit have been

interwoven since their beginning. In spite of the mutual

interdependence of the concepts of limit and infinity,
there has been little research to examine students’
understandings of and difficulties with both concepts
simultaneously. To more fully understand the notions
of infinity and limit and their relationships, more
research on both infinity and limit together is needed.
Thus, the interconnectedness between infinity and limit
in the history of mathematics justifies the need for
an additional approach to study the learning of infinity
and limit simultaneously.

There is a limited number of studies on the
interconnectedness in learning these concepts. Some
researchers have stressed that the concept of infinity
appears when we consider limits (Weller et al. 2004),
as it is difficult to deal with the concept of infinity
without the concept of limit (Monaghan, 2001). More
precisely, when we contemplate the concept of infinity,
we can get to the notion of limit (Mamona-Downs,
2001). The concept of limit exists through infinite
processes. In other words, the concept of limit can
be considered as the infinite processes which are
conceptualized as an ultimate result (Lakoff et al,,
2001). For instance, the limit concept in the notion
of derivative implies the potential infinity with its
geometric conception and a result through infinite
processes. Historically, mathematical infinity and limit
have also been interwoven with and dependent upon
each other in mathematical contexts. Therefore, not
only the concepts of limit and infinity but also their
relationships are important in the curriculum. This
additional approach to the concepts of infinity and
limit may enlighten us about the ways students and
teachers deal with these concepts as well as other notions
such as continuity, differentiability, and integration in
calculus. Likewise, an additional support for empirical

evidence can be drawn from the history of mathematics.
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It should be noted that combinations of historical and
psychological perspectives need to deserve much
attention.

The role of history of mathematics in mathematics
education has been discussed through the three different
uses of the history of mathematics. On the basis of
the history of mathematics, information about where

mathematical their

concepts came from, how
mathematical structures have been developed, and how
they have evolved historically would enable students
and teachers to understand that the problems they are
doing lead to something bigger and to use what they
leam to solve new kinds of problems they will inevitably
face in the future. The new perspectives offered by
the history of mathematics may improve students’
motivation, resolve their learning difficulties through
epistemological analysis, and influence the future
research in mathematics education which value

combinations of historical

and psychological

perspectives.

REFERENCES

Aczel, A. D. (2000). The mystery of the aleph’
Mathematics, the kabbalah, and the search for
infinity. New York, NY: Washington Square
Press.

Allen, G. D. (1999). The History o Infinity: What
s it? Where did it come from? How do we
use it? Who are the inventors? Retrieved May
10, 2004, from http://www.math.tamu.edw/™
don.allen/masters/infinity/infinity.pdf.

Bartolome, L. 1. (1994). Beyond the methods fetish:
Toward a humanizing pedagogy. Harvard
FEducational Review, 64(2), 173-194.

Boyer, C. (1949). The history of the calculus and
its conceptual development. New York, NY:
Dover.

Edwards, C. H. (1979). The historical development
of the calculus. New York, NY: Springer-
Verlag.

Fauvel, J., & van Maanen, J. (2001). The role of
the history of mathematics in the teaching and
leéming of mathematics: Discussion document
for an ICMI study (1997-2000). Educational
Studies in Mathematics, 34, 255-259.

Fischbein, E., Tirosh, D., & Hass, P. (1979). The
intuition of infinity. Educational Studies in
Mathematics, 10, 3-40.

Furinghetti, F. (1997). History of mathematics,
mathematics education, school practice: Case
studies in linking different domains. For the
Learning of Mathematics, 17(1), 55-61.

Hairer, E., & Wanner, G. (1995). Analysis by its
history. New York, NY: Springer—Verlag.

Kleiner, L. (2001). History of the infinitely small
and the infinitely large in calculus. Educational
Studies in Mathematics, 48, 137-174.

Lakoff, G., & Nufez, R. E. (2001). Where
mathematics comes from: How the embodied
mind brings mathematics into being. New
York, NY: Basic Books.

McBride, C. C., & Rollins, J. H. (1977). The effects
of history of mathematics on attitudes towards
mathematics of college algebra students.
Journal for Research in Mathematics
Education, 8Q11), 57-61.

Maor, E. (1987). To infinity and beyond: A cultural
history of the infinite. Princeton: Princeton
University Press.

Mamona-Downs, J. (2001). Letting the intuitive

- 301 -



bear on the formal; A didactical approach for
the understanding of the limit of a sequence.
Educational Studies in Mathematics, 48,
259-288.

Monaghan, J. (2001). Young peoples’ ideas of
infinity. Educational Studies in Mathematics,
48, 239-257.

Moore, AW.
Routledge.

Rotman, B. (1993). Ad Infinitum..the ghost in

Taking God out of
mathematics and putting the body back in.
Stanford, CA: Stanford University Press.

Rucker, R. (1995). Infinity, Infinity and the mind:
The science and philosophy of the infinite (pp.
1-52). Princeton, NJ: Princeton University

(1990). The Infinite. London:

Turing’s machine:

Press.
Tall, D. (1992). The transition to advanced
mathematical thinking: Functions, limits,
infinity and proof. In D.A. Grouws (Ed.),
Handbook of research on mathematics teaching
and learning (pp. 495-5 I 1). New York:

Macmillan.

Tirosh, D. (1992). The role of students’ intuitions
of infinity in teaching Cantorian theory. In D.
Tall (Ed.), Advanced mathematical thinking
(pp. 199-214). Dordrecht, The Netherlands:
Kluwer Academic.

Troutman, J., & McCoy, L. (2008). Remembering
mathematics: The effect of culturally relevant
lessons in math history on students’ attitudes.
The Journal of Mathematics and Culture, 3(1),
14-51.

Weller, K., Brown, A., Dubinsky, E., McDonald,
M., & Stenger, C. (2004). Intimations of infinity.
Notices of the American Mathermatical Society,
51, 741-750.

- 302 -



= % (Indiana State University)

ol

N

ol

ol
i

DA, A,

L o4

@ Satatel A

=

+

T
144

Holnat 3

[e]

olg3te] Tz =l of

A e g
EEERE RS

KN
=

!

wgos v xe o
$gAH 2R A A

=
=

oA}
X

ix

k<
i

of of

i

2010. 7. 18
1 2010. 8. 12

2=
T

I, A
x,,TL"T"X{)}-

24
HAbebg: 2010. 8. 22

i

1 2 (epistemology)
- 303 -

A
=

|

[=]
f54

(limit),

i

i

st AH(History of mathematics), 24 % % 3H(potential infinity), 244 FgHactual
k3

infinity), =

* Key Words | <



