DOI QR코드

DOI QR Code

Syntheses of Resveratrol and its Hydroxylated Derivatives as Radical Scavenger and Tyrosinase Inhibitor

  • Lee, Hyun-Suck (Department of Chemistry and Institute of Applied Chemistry) ;
  • Lee, Byung-Won (Institute of Natural Medicine, Hallym University) ;
  • Kim, Mi-Ran (Department of Chemistry and Institute of Applied Chemistry) ;
  • Jun, Jong-Gab (Department of Chemistry and Institute of Applied Chemistry)
  • Published : 2010.04.20

Abstract

Eight hydroxylated stilbene derivatives including resveratrol, desoxyrhapontigenin and piceatannol as potential radical scavenger and tyrosinase inhibitor are synthesized using optimized Wittig-Horner reaction for excellent trans-selectivity in good yields. Antioxidant activity was tested against ABTS radical and tyrosinase inhibitory activity was performed with L-tyrosine as the substrate based on previous procedure with some modification. In general, catecholic stilbenes showed stronger activity against ABTS radical and resorcinolic moiety showed stronger tyrosinase inhibitory activity. Synthetic piceatannol which containing both catecholic and resorcinolic moieties showed the strongest activity in both as ABTS radical scavenger and tyrosinase inhibitor with $IC_{50}$ values of 4.1 and $8.6\;{\mu}M$, respectively.

Keywords

References

  1. Howitz, K. T.; Bitterman, K. J.; Cohen, H. Y.; Lamming, D. W.;Lavu, S.; Wood, J. G.; Zipkin, R. E.; Chung, P.; Kisielewski, A.Nature 2003, 425, 191. https://doi.org/10.1038/nature01960
  2. Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.;Beecher, C. W. W.; Fong, H. H. S.; Farnsworth, N. R.; Kinghorn,A. D.; Mehta, R. C.; Moon, R. C.; Pezzuto, J. M. Science 1997,275, 218. https://doi.org/10.1126/science.275.5297.218
  3. Wu, C.-P.; Calcagno, A. M.; Hladky, S. B.; Ambudkar, S. V.; Barrand, M. A. FEBS J. 2005, 272, 4725. https://doi.org/10.1111/j.1742-4658.2005.04888.x
  4. Gledhill, J. R.; Montgomery, M. G.; Leslie, A. G. W.; Walker, J. E. Proc. Natl. Acad. Sci. U.S.A. 2007, 272, 4725.
  5. Song, S.; Lee, H.; Jin, Y.; Ha, Y. M.; Bae, S.; Chung, H. Y.; Suh, H.Bioorg. Med. Chem. Lett. 2007, 17, 461. https://doi.org/10.1016/j.bmcl.2006.10.025
  6. Robb. D. A. Tyrosinase In Copper Proteins and Copper Enzymes; Lontie, R., Ed.; CRC Press: Boca Raton, FL, 1984; Vol. 2, pp 207-240.
  7. Kim, Y. M.; Yun, J.; Lee, C. K.; Lee, H.; Min, K. R.; Kim, Y. J. Biol. Chem. 2002, 277, 16340. https://doi.org/10.1074/jbc.M200678200
  8. Meier, H.; Dullweber, U. Tetrahedron Lett. 1996, 37, 1191. https://doi.org/10.1016/0040-4039(95)02414-X
  9. Kim, S.; Ko, H.; Park, J. E.; Jung, S.; Lee, S. K.; Chun, Y.-J. J. Med. Chem. 2002, 45, 160. https://doi.org/10.1021/jm010298j
  10. Guiso, M.; Marra, C.; Farina, A. Tetrahedron Lett. 2002, 43, 597. https://doi.org/10.1016/S0040-4039(01)02227-4
  11. Murias, M.; Handler, N.; Erker, T.; Pleban, K.; Ecker, G.; Saiko, P.; Szekeres, T.; Jager, W. Bioorg. Med. Chem. 2004, 12, 5571. https://doi.org/10.1016/j.bmc.2004.08.008
  12. Han, S. Y.; Lee, H. S.; Choi, D. H.; Hwang J. W.; Yang, D. M.;Jun, J.-G. Synth. Commun. 2009, 39, 1425. https://doi.org/10.1080/00397910802528944
  13. Guiso, M.; Marra, C.; Farina, A. Tetrahedron Lett. 2002, 43,597. https://doi.org/10.1016/S0040-4039(01)02227-4
  14. Choi, S. Z.; Jang, K. U.; Chung, S. H.; Park, S. H.; Kang,H. C.; Yang, E. Y.; Cho, H. J.; Lee, K. R. Arch Pharm. Res. 2005,28, 1027. https://doi.org/10.1007/BF02977396
  15. Ko, S. K.; Lee, S. M.; Whang, W. K. Arch Pharm. Res. 1999, 22, 401. https://doi.org/10.1007/BF02979065
  16. Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J. Phytochemistry 2004, 65, 1389. https://doi.org/10.1016/j.phytochem.2004.04.016
  17. Likhitwitayawuid, K.; Sritularak, B. J. Nat. Prod. 2001, 64, 1457. https://doi.org/10.1021/np0101806
  18. Shimizu, K.; Kondo, R.; Sakai, K. Planta Med. 2000,66, 11. https://doi.org/10.1055/s-2000-11113
  19. Lee, B. W.; Lee, J. H.; Gal, S. W.; Moon, Y. H.; Park, K. H. Biosci. Biotechnol. Biochem. 2006, 70, 427. https://doi.org/10.1271/bbb.70.427

Cited by

  1. vol.31, pp.5, 2011, https://doi.org/10.3109/10799893.2011.607170
  2. Pharmacometrics of 3-Methoxypterostilbene: A Component of Traditional Chinese Medicinal Plants vol.2013, pp.1741-4288, 2013, https://doi.org/10.1155/2013/261468
  3. Isolation of Resveratrol from Vitis Viniferae Caulis and Its Potent Inhibition of Human Tyrosinase vol.2013, pp.1741-4288, 2013, https://doi.org/10.1155/2013/645257
  4. vol.76, pp.4, 2013, https://doi.org/10.1021/np300893n
  5. Cloning, Expression Pattern Analysis and Subcellular Localization of Resveratrol Synthase Gene in Peanut (<i>Arachis hypogaea</i> L.) vol.05, pp.24, 2014, https://doi.org/10.4236/ajps.2014.524378
  6. Resveratrol, piceatannol, and isorhapontigenin from Norway spruce (Picea abies) debarking wastewater as inhibitors on the growth of nine species of wood-decaying fungi vol.50, pp.3, 2016, https://doi.org/10.1007/s00226-016-0814-4
  7. Dehydrogenative Formation of Resorcinol Derivatives Using Pd/C–Ethylene Catalytic System vol.82, pp.5, 2017, https://doi.org/10.1021/acs.joc.6b03037
  8. In Vitro Estrogenic and Breast Cancer Inhibitory Activities of Chemical Constituents Isolated from Rheum undulatum L. vol.23, pp.5, 2018, https://doi.org/10.3390/molecules23051215
  9. Syntheses of Resveratrol Analogues and Evaluation of Their Antioxidant Activity vol.35, pp.5, 2010, https://doi.org/10.5012/bkcs.2014.35.5.1549
  10. Synthesis of Piceatannol, an Oxygenated Analog of Resveratrol vol.11, pp.7, 2016, https://doi.org/10.1177/1934578x1601100732
  11. An Efficient Synthesis of Deoxyrhapontigenin-3-O-β-D-glucuronide, a Brain-Targeted Derivative of Dietary Resveratrol, and Its Precursor 4′-O-Me-Resveratrol vol.4, pp.5, 2010, https://doi.org/10.1021/acsomega.9b00722
  12. Inhibition of Pancreatic α-amylase by Resveratrol Derivatives: Biological Activity and Molecular Modelling Evidence for Cooperativity between Viniferin Enantiomers vol.24, pp.18, 2010, https://doi.org/10.3390/molecules24183225
  13. Chemical components from the twigs of Caesalpinia latisiliqua and their antiviral activity vol.74, pp.1, 2020, https://doi.org/10.1007/s11418-019-01335-2
  14. Resveratrol Derivatives as Potential Treatments for Alzheimer’s and Parkinson’s Disease vol.12, pp.None, 2010, https://doi.org/10.3389/fnagi.2020.00103
  15. Enzymatic synthesis of a catecholic polyphenol product with excellent antioxidant activity vol.38, pp.6, 2020, https://doi.org/10.1080/10242422.2020.1756789
  16. Cassane-type diterpenoids from Caesalpinia latisiliqua (Cav.) Hattink vol.47, pp.None, 2022, https://doi.org/10.1016/j.phytol.2021.11.011