A RESULT ON GENERALIZED DERIVATIONS WITH ENGEL CONDITIONS ON ONE-SIDED IDEALS

Çağrı Demir and Nurcan Argaç

Abstract. Let R be a non-commutative prime ring and I a non-zero left ideal of R. Let U be the left Utumi quotient ring of R and C be the center of U and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that $[g(x^m)x^n, x^r]_k = 0$ for all $x \in I$, then there exists $a \in U$ such that $g(x) = xa$ for all $x \in R$ except when $R \cong M_2(GF(2))$ and $I[I,I] = 0$.

1. Introduction

Throughout this paper unless specially stated, R always denotes a prime ring with center $Z(R)$, extended centroid C, left Utumi quotient ring U, and two sided Martindale quotient ring Q. For any $x, y \in R$, we set $[x, y]_1 = [x, y] = xy - yx$ and $[x, y]_k = [[x, y]_{k-1}, y]$ for $k > 1$.

We mean by a derivation of R an additive mapping d from R into itself which satisfies the rule $d(xy) = d(x)y + xd(y)$ for all $x, y \in R$. A well-known result proved by Posner [21] states that R must be commutative if there exists a nonzero derivation d of R such that $[d(x), x] = 0$ for all $x \in R$. Many related generalizations have been obtained by a number of authors in the literature (e.g., see, [10], [14], [15], [16]).

An additive mapping $g : R \to R$ is called a generalized derivation of R if there exists a derivation d of R such that $g(xy) = g(x)y + xd(y)$ for all $x, y \in R$ [9]. Obviously any derivation is a generalized derivation. Moreover, another basic example of a generalized derivation is the mapping of the form $g(x) = ax + xb$ for $a, b \in R$. Many authors have studied generalized derivations in the context of prime and semiprime rings (see [1], [2], [3], [13], [9], [18]).

In [13], T. K. Lee extended the definition of a generalized derivation as follows. By a generalized derivation he means an additive mapping $g : J \to U$ such that $g(xy) = g(x)y + xd(y)$ for all $x, y \in J$, where U is the right Utumi
quotient ring of R, J is a dense right ideal of R and d is a derivation from J to U. He also proved that every generalized derivation can be uniquely extended to a generalized derivation of U. In fact, there exists $a \in U$ and a derivation d of U such that $g(x) = ax + d(x)$ for all $x \in U$ [13, Theorem 3]. A corresponding form to dense left ideals as follows. Let I be a dense left ideal of R and U be the left Utumi quotient ring of R. An additive mapping $g : I \to U$ is called a generalized derivation if there exists a derivation $d : I \to U$ such that $g(xy) = xg(y) + d(x)y$ for all $x, y \in I$. Following the same methods in [13], one can extend g uniquely to a generalized derivation of U, which we will also denote by g, and g assumes the form $g(x) = xa + d(x)$ for all $x \in U$ and some $a \in U$, where d is a derivation of U. Notice that $g(x) = ax + (d - \delta_a)(x)$ for all $x \in U$, where δ_a denotes the inner derivation induced by the element $a \in U$, i.e., $\delta_a(x) = [a, x]$. Setting $\delta = d - \delta_a$, we may always assume that a generalized derivation of a prime ring is of the form $g(x) = ax + \delta(x)$ for all $x \in U$, where $a \in U$ and δ is a derivation of U.

In [11], C. Lanski proved that if R is a prime ring with derivation d, I is a left ideal of R, and k, n are positive integers such that $[d(x^k), x^n] = 0$ for all $x \in I$, then either $d = 0$ or R is commutative. In [1], this result extended to generalized derivations.

In [17], T. K. Lee and W. K. Shiue showed that if R is a non-commutative prime ring, I is a nonzero left ideal of R and d is a derivation of R such that $[d(x^m)x^n, x^r]_k = 0$ for all $x \in I$, where k, m, n, r are fixed positive integers, then $d = 0$ except when $R \cong M_2(GF(2))$.

The aim of the present paper is to extend this result to generalized derivations. Precisely, we will prove the following.

Theorem 1. Let R be a non-commutative prime ring and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that $[g(x^m)x^n, x^r]_k = 0$ for all $x \in R$, then there exists an element $a \in U$ such that $g(x) = xa$ for all $x \in R$.

Theorem 2. Let R be a non-commutative prime ring, I a non-zero left ideal of R and k, m, n, r fixed positive integers. If there exists a generalized derivation g of R such that $[g(x^m)x^n, x^r]_k = 0$ for all $x \in I$, then there exists $a \in U$ such that $g(x) = xa$ for all $x \in R$ except when $R \cong M_2(GF(2))$ and $I[I, I] = 0$.

2. Preliminaries

In what follows, unless stated otherwise, R will be a prime ring. The related object we need to mention is the left Utumi quotient ring U of R (sometimes, as in [4], U is called the maximal left ring of quotients).

The definitions, the axiomatic formulations and the properties of this quotient ring U can be found in [4].

In any case, when R is a prime ring, all we need about U is that

1) $R \subseteq U$;

2) U is a prime ring;
3) The center of U, denoted by C, is a field which is called the extended centroid of R.

We also frequently use the theory of generalized polynomial identities and differential identities (see [4], [10], [12], [20]). In particular we need to recall the following:

Remark 1 ([6]). If R is a prime ring and I is a non-zero left ideal of R, then I, RI and UI satisfy the same generalized polynomial identities.

Remark 2 ([10]). Let R be a prime ring, d a nonzero derivation of R and I a nonzero two-sided ideal of R. Let $f(x_1, \ldots , x_n, d(x_1), \ldots , d(x_n))$ be a differential identity in I, that is

$$f(r_1, \ldots , r_n, d(r_1), \ldots , d(r_n)) = 0$$

for all $r_1, \ldots , r_n \in I$.

Then one of the following holds:

1) Either d is an inner derivation in Q, the Martindale quotient ring of R, in the sense that there exists $q \in Q$ such that $d(x) = [q, x]$ for all $x \in R$, and I satisfies the generalized polynomial identity

$$f(r_1, \ldots , r_n, [q, r_1], \ldots , [q, r_n])$$

or

2) I satisfies the generalized polynomial identity

$$f(x_1, \ldots , x_n, y_1, \ldots , y_n).$$

3. Results

We need the following lemmas.

Lemma 1. Let $R = M_t(F)$, where F is a field, $t \geq 2$ and $a, b \in R$. Suppose that

$$[ax^{m+n} + [b, x^m]x^n, x^r]_k = 0 \quad \text{for all } x \in R,$$

where k, m, n, r are fixed positive integers. Then $a + b \in F$.

Proof. Let e be an idempotent element in R. Setting $x = e$ in (1) and multiplying left side by $(1 - e)$, we see that $(1 - e)(a + b)e = 0$ for any idempotent element e. Thus $a + b$ is a diagonal matrix. Note that $u(a + b)u^{-1}$ must be diagonal for each invertible element $u \in R$, since

$$[(uau^{-1})x^{m+n} + ([ubu^{-1}], x^m)x^n, x^r]_k = 0$$

for all $x \in R$. Write $a + b = \sum_{i=1}^t \beta_i e_{ii}$, where $\beta_i \in F$. Then for each $j > 1$, we see that $\beta_j - \beta_1$, the $(1,j)$-entry of $(1 + e_{1j})(a + b)(1 + e_{1j})^{-1}$, equals 0. That is, $\beta_j = \beta_1$ for $j > 1$ and hence $a + b \in F$. \qed

Lemma 2. Let R be a non-commutative prime ring and $a, b \in R$ such that

$$[ax^{m+n} + [b, x^m]x^n, x^r]_k = 0 \quad \text{for all } x \in R,$$

where k, m, n, r are fixed positive integers. Then $a + b \in Z(R)$.
Proof. Suppose on the contrary that \(a + b \notin C \). Then

\[
f(X) = [(a + b)X^{m+n} - X^m a X^n, X^r]_k
\]

is a nontrivial generalized polynomial identity (GPI) for \(R \). By [6], \(f(X) \) is also a GPI for \(Q \). Denote by \(F \) either the algebraic closure of \(C \) or \(C \) according to the cases where \(C \) is either infinite or finite, respectively. Then, by a standard argument (e.g., see [19, Proposition]), \(f(X) \) is also a GPI for \(Q \otimes_C F \). Since \(Q \otimes_C F \) is centrally closed prime \(F \)-algebra [7, Theorems 2.5 and 3.5], by replacing \(R, C \) with \(Q \otimes_C F, F \), respectively we may assume \(R \) is centrally closed and \(C \) is either finite or algebraically closed. In view of Martindale’s theorem [20], \(R \) is a primitive ring having a non-zero socle \(H \) with \(C \) as its associated division ring.

Since \(a + b \notin C \), we have \([a + b, h] \neq 0 \) for some \(h \in H \). By Litoff’s theorem [8], there exists an idempotent \(e \in H \) such that \(h, ha, hb, bh \in eRe \). Note that \(ef(eXe)c \) is a GPI for \(R \). Thus, \([(eae)X^{m+n} + [ebe, X^n]X^n, X^r]_k \) is a GPI for \(eRe \). Since \(eRe \cong M_s(C) \) for some \(s \geq 1 \) then \(eae + ebe \) is central in \(eRe \) by Lemma 1. Then there exists \(c \in C \) such that \(ec = eae + ebe \). Hence \(ch = each + ebeh = cae + ehh = ah + bh = (a + b)h \). Similarly \(he = heae + hebe = hae + hbe = chae + ehbe = ha + hb = h(a + b) \). So \([a + b, h] = 0 \), a contradiction. Therefore \(a + b \in Z(R) \). \(\square \)

Corollary 1. Let \(R \) be a prime ring and \(a \in R \) such that \([ax^m, x^n]_k = 0 \) for all \(x \in R \), where \(k, m, n \) are fixed positive integers. Then \(a \in Z(R) \).

Proof of Theorem 1. As we have already noted that every generalized derivation \(g \) on a dense left ideal of \(R \) can be uniquely extended to \(U \) and assumes the form \(g(x) = ax + d(x) \) for some \(a \in U \) and a derivation \(d \) on \(U \). If \(d = 0 \), then \([ax^m + d, x^n]_k = 0 \) for all \(x \in R \). By Remark 1, \(U \) satisfies the above generalized identity. Moreover, since \(U \) remains prime by the primeness of \(R \), replacing \(R \) with \(U \), we may assume that \(a \in R \) and \(C \) is just the center of \(R \). By Corollary 1, we have \(a \in Z(R) \). Thus \(g(x) = ax = xa \) for all \(x \in R \). So we may assume that \(d \neq 0 \).

In the light of Remark 2, we divide the proof into two cases:

Case 1. Let \(d \) be the inner derivation induced by the element \(b \in U - C \), that is, the \(d(x) = [b, x] \) for all \(x \in U \). Then \(R \) satisfies the nontrivial generalized polynomial identity

\[
[ax^{m+n} + [b, x^n]x^n, x^r]_k.
\]

By Remark 1, \(U \) satisfies the above generalized polynomial identity. Moreover, since \(U \) remains prime by the primeness of \(R \), replacing \(R \) with \(U \), we may assume that \(a, b \in R \) and \(C \) is just the center of \(R \). Then by Lemma 2, we have that \(a + b \in Z(R) \). Therefore \(g(x) = ax + [b, x] = (a + b)x - xb = x(a + b - b) = xa \) for all \(x \in R \).

Case 2. Let now \(d \) be an outer derivation of \(U \). To continue the proof, we set \(G(Y, X) = \sum_{i=0}^{m-1} X^i Y X^{m-1-i} \), a non-commuting polynomial in variables...
Let e be idempotent for some μ. In particular, $e_{\mu}c_{e_{\mu}}$ and $e_{\mu}f_{e_{\mu}}$ are idempotents in I. Multiplying the first equation by e_{μ} we get

$$\left[a x^{m+n} + G(y, x)x^n, x^r \right]_k = 0$$

Using (2) we arrive at the following equations:

$$\left[a x^{m+n} + G(y, x)x^n, x^r \right]_k = 0$$

Taking $y = 0$ in the above identity, we get

$$\left[a x^{m+n}, x^r \right]_k = 0 \text{ for all } x \in R.$$

So we have

$$\left[d(x^n)x^n, x^r \right]_k = 0 \text{ for all } x \in R.$$

Therefore by [17, Theorem 1], we must have $d = 0$, a contradiction. This proves the result. \hfill \Box

By using almost the same argument in [17], we have the following.

Lemma 3. Let $R = M_l(F)$, where F is a field, $l \geq 2$, and I a minimal left ideal of R. Suppose $[a x^{m+n} + [b, x^m]x^n, x^r]_k = 0$ for all $x \in I$, where m, n, r, k are fixed positive integers. Then $a + b \in F$ except when $R \cong M_2(GF(2))$.

Proof. Suppose that $a + b \notin F$. Since I is a minimal left ideal, it is clear that we may assume $I = Re_{11}$. Let $e = e^2 \in I$. By the hypothesis, we have $[a e + [b, e]e, e]_k = 0$. Left multiplying by $1 - e$, we see that

$$\left(1 - e \right) \left(a + b \right) e = 0 \text{ for all } e \in I.$$

Let $\beta \in F$ and $x \in R$. Then $f = e + (1 - e)xe$ and $g = e + \beta(1 - e)xe$ are idempotents in I. Set $c = a + b$, then $c \notin F$ and $(1 - e)cxe = 0$. Thus by (2) we have $(1 - f)cxe = 0 = (1 - g)cxe$. Therefore we see that

$$((1 - e) - (1 - e)xe)c(e + (1 - e)xe) = 0$$

and

$$((1 - e) - \beta(1 - e)xe)c(e + \beta(1 - e)xe) = 0.$$

Using (2) we arrive at the following equations:

$$(1 - e)xce - (1 - e)xce - (1 - e)xce(1 - e)xe = 0$$

and

$$\beta(1 - e)xce - \beta(1 - e)xce - \beta^2(1 - e)xce(1 - e)xe = 0.$$

Multiplying first equation by β and comparing the last two equations we see that

$$\left(\beta^2 - \beta \right) (1 - e)xce(1 - e)xe = 0 \text{ for all } x \in R.$$

Then either $\beta \in \{0, 1\}$ or $ce(1 - e) = 0$ for any idempotent $e \in I$. Suppose that the second possibility holds. In particular, $e_{11}c(1 - e_{11}) = 0$. Let $x \in R$. Then we have $xe_{11}e = xe_{11}e_{11}c = \mu xe_{11}$ for some $\mu \in F$. Thus we see that $I(c - \mu) = Re_{11}(c - \mu) = 0$ for some $\mu \in F$. On the other hand, in view of (2) we get $[c, e] = 0$ for any idempotent $e \in I$. Then $0 = [c, e] = [c - \mu, e] = (c - \mu)e$ for all idempotent
Let $c_{11} + (1 - c_{11})xe_{11} \in I$ be an idempotent for every $x \in R$. Assume that $(c - \mu)(1 - e_{11})xe_{11} = 0$ for all $x \in R$. Since $(c - \mu)Re_{11} = 0$, it is clear that $(c - \mu)Re_{11} = 0$. Therefore $c = \mu \in F$, a contradiction. Thus we get $F = GF(2)$.

Now we prove that $l = 2$. Suppose on the contrary that $l > 2$. Let i, j be two distinct positive integers such that $2 \leq i, j \leq l$. Then $e_{11}, e_{11} + e_{11}, e_{11} + e_{1}$ and $e_{11} + e_{1} + e_{1}$ are idempotents in I. In view of (2) we obtain that

$$ce_{11} = e_{11}ce_{11},$$

and

$$c(e_{11} + e_{1}) = (e_{11} + e_{1})c(e_{11} + e_{1}),$$

and

$$c(e_{11} + e_{1} + e_{1}) = (e_{11} + e_{1} + e_{1})c(e_{11} + e_{1} + e_{1}).$$

Using $ce_{11} = e_{11}ce_{11}$ and comparing the other equations in (3), we arrive at $e_{11}ce_{11} + e_{1}ce_{1} = 0$. Set $c = \sum_{1 \leq i, j \leq l} \beta_{ij}e_{ij}$, where $\beta_{ij} \in F$. Then this implies that $\beta_{ii} = 0 = \beta_{1i}$. Hence the second equation in (3) reduces to $ce_{11} = \beta_{11}e_{11}$, and so $\beta_{pp} = 0$ for $p \neq i$ and $\beta_{ii} = \beta_{11}$. Thus we get $c = a + b \in F$, a contradiction. This proves the lemma.

Lemma 4. Let R be a prime ring, I a non-zero left ideal of R and $a \in R$ such that $[ax^{m}, x^{n}]k = 0$ for all $x \in I$, where k, m, n are fixed positive integers. Then $a \in Z(R)$ except when $R \cong M_{2}(GF(2))$ and $I[I, I] = 0$.

Proof. Assume that $[ax^{m}, x^{n}]k = 0$ for all $x \in I$. Then

$$[(a, x^{n})x^{m}, x^{n}]k = [ax^{m}, x^{n}]k + 1 = 0$$

for all $x \in I$. Now by [17, Lemma 3] we have $a \in Z(R)$ except when $R \cong M_{2}(GF(2))$ and $I[I, I] = 0$.

Lemma 5. Let R be a non-commutative prime ring and I a non-zero left ideal and $a, b \in R$ such that

$$[ax^{m+n} + [b, x^{n}]x^{m}, x^{n}]k = 0$$

for all $x \in I$, where k, m, n, r are fixed positive integers. Then $a + b \in Z(R)$ except when $R \cong M_{2}(GF(2))$ and $I[I, I] = 0$.

Proof. Assume that $a + b \notin C$. If $I(b - \beta) = 0$ for some $\beta \in C$, then setting $b' = b - \beta$ we have $Ib' = 0$. Moreover by (4) it is clear that

$$[ax^{m+n} + [b', x^{m}]x^{n}, x^{n}]k = 0$$

for all $x \in I$.

Thus we get

$$[(a + b')x^{m+n}, x^{n}]k = 0$$

for all $x \in I$.

By Remark 1, $[(a + b')x^{m+n}, x^{n}]k = 0$ for all $x \in UI$. Moreover $UIb' = 0$ if and only if $Ib' = 0$. Now I and UI satisfy the same basic conditions. Hence
replacing R, I with U, UI, respectively, we may assume that $a, b' \in R$ and C is just the center of R. Thus we get the conclusion $R \cong M_2(GF(2))$ and $I[I, I] = 0$ since $a + b' \not\in C$.

So we may assume that $I(b - \beta) \neq 0$ for all $\beta \in C$. Hence, in view of [14, Lemma 3], either R is a PI-ring or there exists an element $u \in I$ such that ub and u are C-independent. For the latter case,

$$[a(Xu)^{m+n} + b, (Xu)^m(Xu)^n, (Xu)^r]_k$$

is a non-trivial GPI for R.

On the other hand we have $[a x^{m+n} + [b, x^m] x^n, x^r]_k = 0$ for all $x \in QI$ by [6]. Thus applying the same argument in Lemma 2 and replacing I by QI, we may assume that R is a centrally closed prime ring having a non-zero socle H, with C as its associated division ring and $I = IC$. Moreover C is either algebraically closed or finite. If R contains no non-trivial idempotents, then R is a division ring and $I = R$. Then by the proof of Theorem 1 we obtain that $a + b \in C$, a contradiction. So we may assume that R contains a non-trivial idempotent. On the other hand we have

- $I[I, I] = 0$ if and only if $HI[H1, H1] = 0$ by [6],
- $I(b - \mu) = 0$ if and only if $HI(b - \mu) = 0$ for some $\mu \in C$.

So replacing I by HI we may assume $I \subseteq H$. Suppose first that $I[I, I] \neq 0$. Then I always contains an idempotent with rank 2 or greater that 2. Let e be such an idempotent in I.

Now choose x as exe in (4), then

$$[a(exe)^{m+n} + [b, (exe)^m](exe)^n, (exe)^r]_k = 0$$

and left-side multiplying by e yields

$$[(exe)(exe)^{m+n} + [ebe, (exe)^m](exe)^n, (exe)^r]_k = 0$$

for all $x \in R$. Left-side multiplying by e yields that

$$eexe = eexe - eexe \in Ce.$$

Since $ex = xe \in C$, we get $[e, c]xe \in Ce$ for all $x \in R$. Suppose for the moment that $[e, c] \neq 0$. Choose $x_0 \in R$ such that $[e, c]x_0e = \beta e \neq 0$ for some $\beta \in C$. Then we have $\beta exe = [e, c]x_0exe \in Ce$. Therefore $eexe = Ce$, because $\beta \neq 0$. But $eexe = Ce$ implies that rank$(e) = 1$, a contradiction. Hence $[e, c] = 0$. Now since I is completely reducible left H-module, each element of I is contained in Hf for some $f^2 = f \in I$ with rank$(f) \geq 2$. But $fc = cf \in Cf$.

Let $x \in I$. Then $x = hf$ for some $h \in H$. We see that $xc = hfc \in Chf = Cx$, and so $[xc, x] = 0$ for all $x \in I$. Linearizing this last equation, we get

$$[xc, y] + [yc, x] = 0 \quad \text{for all } x, y \in I.$$

Replacing $y = e$ in (6) and using the fact that $[e, c] = 0$, we obtain

$$0 = [xc, e] + [ec, x] = e[c, x] \quad \text{for all } x \in I.$$

Hence we have $0 = e[c, xy] = ex[c, y]$ for all $x, y \in I$. Therefore we get $eRI[c, I] = (0)$, and so $I[c, I] = 0$. In particular, $[x[c, x], x] = 0$ for all $x \in I$. So in view of [17, Lemma 3(ii)] one obtains $I(c - \lambda) = 0$ for some $\lambda \in C$.

Let $x \in R$, then it is clear that $f = e + (1 - e)xe \in I$ is an idempotent with $\text{rank}(f) = \text{rank}(e) \geq 2$. Since $[e, c] = 0$ for all $e = e^2 \in I$ with $\text{rank}(e) \geq 2$, in particular we have

$$[c - \lambda, e + (1 - e)xe] = 0 \quad \text{for all } x \in R.$$

Hence we get $(c - \lambda)e + (c - \lambda)(1 - e)xe = 0$. On the other hand we have

$$(c - \lambda)e = [c - \lambda, e] = 0. \quad \text{So } (c - \lambda)xe = 0 \text{ for all } x \in R. \quad \text{Thus the primeness of } R \text{ implies that } c = \lambda \in C, \quad \text{and hence } a + b = c \in Z(R), \text{ a contradiction. This proves that } I[I, I] = 0.$$

If now $H \cong M_l(C)$ for some $l \geq 2$, then in view of Lemma 3, we are done. Thus we may assume $H \not\cong M_l(C)$ for all $l \geq 2$. Since $c \notin C$, it is clear that $ch \neq hc$ for some $h \in I$. It follows from Litoff’s theorem [8] that there exists $e = e^2 \in H$, $\text{rank}(e) \geq 3$, such that $ch, hc, h \in eHe$. Note that $ece \notin Ce$. Indeed, if $ece \in Ce$, then $eche \neq eceh$, and hence $ch = hc$, a contradiction. On the other hand, $0 \neq h \in I \cap eRe$. Since R is centrally closed, $IC = I$ and $I[I, I] = 0$, it is clear that I is a minimal left ideal of R by [5, Lemma 5.1]. We also have that $I \cap eRe$ is still a minimal left ideal of eRe and $eRe \cong M_l(C)$, where $l = \text{rank}(e) \geq 3$. Indeed, if J is a left ideal of eRe such that $J \not\subseteq I \cap eRe$, then $RJ \not\subseteq RJ \subseteq I$. Using the fact that RJ is a left ideal of R such that $RJ \not\subseteq I$ and I is a minimal ideal of R, we get $RJ = 0$. Hence $J = 0$ by the primeness of R. Now by the hypothesis, we have

$$[(eae)(exe)^{m+n} + [ebe, (exe)^m](exe)^n, (exe)^r]_k = 0 \quad \text{for all } x \in R,$$

and so

$$[(eae)x^{m+n} + [ebe, x^m]x^n, x^r]_k = 0 \quad \text{for all } x \in I \cap eRe.$$

In view of Lemma 3 this yields that $eRe \cong M_2(GF(2))$, a contradiction. This proves the result. \qed

Example 1. Let $R = M_s(F), s > 1$, the $s \times s$ matrices over a field F and $I = Re_{11}$. If we set $a = 1 - e_{11}$ and $b = e_{11}$, then $[ax^{m+n} + [b, x^n]x^n, x^r]_k = 0$ for all $x \in I$, where k, m, n, r are fixed positive integers and $a + b \in Z(R)$.

Proof of Theorem 2. As we have already noted that every generalized derivation g on a dense left ideal of R can be uniquely extended to U, we may assume that g has the form $g(x) = ax + d(x)$ for some $a \in U$ and a derivation d on U. If $d = 0$, then $[ax^{m+n}, x^r]_k = 0$ for all $x \in I$. Then by Lemma 4 we have $a \in C$
except when \(R \cong M_2(GF(2)) \) and \(I[I, I] = 0 \). If \(a \in C \), then \(g(x) = ax = xa \) for all \(x \in R \). So we may assume that \(d \neq 0 \).

In the light of Remark 2, we divide the proof into two cases:

Case 1. Let \(d \) be the inner derivation induced by the element \(b \in U - C \), that is, \(d(x) = [b, x] \) for all \(x \in U \). Then \(I \) satisfies the nontrivial generalized polynomial identity

\[
[aX^m+n + [b, X^m]X^n, X^r]_k.
\]

By Remark 1, \(RI \) satisfies the above generalized identity. Since by [4], \(R \) and \(U \) satisfy the same GPIS, we have that \(UI \) satisfies above identity. Then applying Lemma 5 to \(UI \), we have that \(a + b \in C \) except when \(U \cong M_2(GF(2)) \) and \(UI[UI, UI] = 0 \). Moreover as in the proof of Lemma 5 we may replace \(R, I \) by \(U, UI \), respectively. Then in particular, \(a + b \in C \) except when \(R \cong M_2(GF(2)) \) and \(I[I, I] = 0 \). If \(a + b \in C \), then \(g(x) = ax + [b, x] = (a + b)x - xb = x(a + b - b) = xa \) for all \(x \in R \).

Case 2. Let now \(d \) be an outer derivation of \(U \). To continue the proof we set \(G(Y, X) = \sum_{i=0}^{m-1} X^iYX^{m-1-i} \), a non-commuting polynomial in variables \(X \) and \(Y \). Note that \(d(x^n) = G(d(x), x) \). Since

\[
[aX^m+n + G(d(x), x)x^n, x^r]_k
\]

is an identity for \(I \), then for any \(u \in I - C \)

\[
[a(xu)^{m+n} + G(d(xu), xu)(xu)^n, (xu)^r]_k
\]

is an identity for \(R \). Thus \(R \) satisfies the following

\[
[a(xu)^{m+n} + G(d(xu), xu)(xu)^n, (xu)^r]_k.
\]

From Remark 2, since \(d \) is an outer derivation \(R \) satisfies the following identity

\[
[a(xu)^{m+n} + G(yu + xd(u), xu)(xu)^n, (xu)^r]_k.
\]

Taking \(y = 0 \) in (7) we get

\[
[a(xu)^{m+n} + G(xd(u), xu)(xu)^n, (xu)^r]_k = 0.
\]

By the linearity of \(g(Y, X) \) on \(Y \), subtracting equation (7) from (8) yields that \(R \) satisfies

\[
[G(yu, xu)(xu)^n, (xu)^r]_k = 0,
\]

which means that \(R \) satisfies

\[
0 = \left[\sum_{i+j=m-1} (xu)^i(yu)(xu)^{j+n}, (xu)^r \right]_k = \sum_{i+j=m-1} (xu)^i[(yu), (xu)^r]_k(xu)^{j+n}.
\]

Clearly (9) is a nontrivial GPI for \(R \), since \(u \notin C \). So \(RC \) is a primitive ring with a non-zero socle \(H \) ([20]). \(J = HI \) is a non-zero left ideal of \(H \). Note that \(H \) is simple, \(J = HJ \) and \(J \) satisfies the same basic conditions as \(I \) ([12]). Now
replace R by H and I by J, then, without loss of generality, R is simple and equal to its own socle and $RI = I$. Let $e^2 = e$ be some non-trivial idempotent in I. So for all $x, y \in R$, we have
\[\sum_{i+j=m-1} (xe)^i[(ye),(xe)^r]_k(xe)^{j+n} = 0 \]
and choosing $y = (1-e)r \in R$ we get
\[(1-e)(re)(xe)^{kr+m+n-1} = 0. \]
This leads to the contradiction that either $e = 0$ or $e = 1$. Thus any idempotent element of I is trivial, that is, $I = R$. Therefore we have to consider the condition
\[\sum_{i+j=m-1} x^i[y,x]_k x^{j+n} = 0 \]
for all $x, y \in R$, which is a polynomial identity. From Lemma 2 in [11], it follows that there exists a suitable field F such that $R \subseteq M_s(F)$, the ring of all $s \times s$ matrices over F, and moreover $M_s(F)$ satisfies the same polynomial identity of R. In particular $M_s(F)$ satisfies
\[\sum_{i+j=m-1} x^i[y,x]_k x^{j+n} = 0. \]
Suppose $s \geq 2$ and choose $x = e_{11}$ and $y = e_{21}$ in (10). Then we have $e_{21} = 0$. Thus $s = 1$ and R is commutative, a contradiction. □

The following example shows our results do not hold in semiprime rings:

Example 2. Let F be any field. Consider the semiprime ring
\[R = \begin{pmatrix} GF(2) & GF(2) & 0 \\ GF(2) & GF(2) & 0 \\ 0 & 0 & F \end{pmatrix}. \]
Let
\[I = \begin{pmatrix} GF(2) & 0 & 0 \\ GF(2) & 0 & 0 \\ 0 & 0 & F \end{pmatrix} \]
be the left ideal of R. If $a = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and $b = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \alpha \end{pmatrix}$ for $\alpha \in F$ fixed, one can easily see that $[ax^2 + [b,x]x,x] = 0$ for all $x \in I$, since $uv(u + v) = 0$ for all $u, v \in GF(2)$. Then $g(x) = ax + [b,x] = (a+b)x - xb$ is a generalized derivation such that $[g(x)x,x] = 0$ for all $x \in I$. But
\[a + b \notin C = \left\{ \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{pmatrix} \mid \lambda \in GF(2), \mu \in F \right\}. \]
References

cagri.demir@ege.edu.tr