DOI QR코드

DOI QR Code

Removal of Photoresist Mask after the Cl2/HBr/CF4 Reactive Ion Silicon Etching

Cl2/HBr/CF4 반응성 이온 실리콘 식각 후 감광막 마스크 제거

  • Ha, Tae-Kyung (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Gwan-Ha (School of Electrical and Electronics Engineering, Chung-Ang University) ;
  • Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
  • 하태경 (중앙대학교 전자전기공학부) ;
  • 우종창 (중앙대학교 전자전기공학부) ;
  • 김관하 (중앙대학교 전자전기공학부) ;
  • 김창일 (중앙대학교 전자전기공학부)
  • Published : 2010.05.01

Abstract

Recently, silicon etching have received much attention for display industry, nano imprint technology, silicon photonics, and MEMS application. After the etching process, removing of etch mask and residue of sidewall is very important. The investigation of the etched mask removing was carried out by using the ashing, HF dipping and acid cleaning process. Experiment shows that oxygen component of reactive gas and photoresist react with silicon and converting them into the mask fence. It is very difficult to remove by using ashing or acid cleaning process because mask fence consisted of Si and O compounds. However, dilute HF dipping is very effective process for SiOx layer removing. Finally, we found optimized condition for etched mask removing.

Keywords

References

  1. S. M. Lee, S. H. Lee, and M. G. Lee, Proc. Kor. S. Pre. Eng. Conf. (Korean Society of Precision Engineering, Jeju, Korea, 2007) p. 769.
  2. J. H. Park, L. H. Young, C. N. Jin, Y. J. Hyun, andB. K. Sook, Korea patant NO. 10-0670835 (2006).
  3. K. H. Kwon, S. M. Lee, J. S. Lee, S. J. Kang, andB. W. Kim, J . Ins. Elec. Eng. Kor. 14, 317 (1991)
  4. Dennis M. Manos and Daniel L. Flamm (eds) Plasma Etching An Introduction (Academic Press,New York, 1989) p. 91.
  5. E. Kay, J. Coburn, and A. Diks, In Topics in Current Chemistry, Plasma Chemistry III (eds. S. Veprek, and M. Venugopalan) (Springer-Verlag, Berlin, 1980) p. 1.
  6. G. C. Swatz and P. M. Schaible, J . Vac. Sci. Technol. 16, 410 (1979). https://doi.org/10.1116/1.569962
  7. E. A. Ogyzle, D. E. Ibbotson, D. L. Flamm, and J. A. Mucha, J. Appl. Phys. 67, 3115 (1990). https://doi.org/10.1063/1.345388
  8. C. Hibert, State of the art DRIE processing, CMI annual review, (2004).
  9. E. Quévy, B. Parvais, J. P. Raskin, L. Buchaillot, D.Flandre, and D. Collard, J. Micromech. and Microeng. 12, 328 (2002). https://doi.org/10.1088/0960-1317/12/3/320
  10. R. Dussart, M. Boufnichel, G. Marcos, P. Lefaucheux,A. Basillais, R. Benoit, T. Tillocher, X. Mellhaoui, H.Estrade-Szwarckopf, and P. Ranson, J. Micromech. Microeng. 14, 190 (2004). https://doi.org/10.1088/0960-1317/14/2/004
  11. J. H. Uh, Master Thesis, p. 1-62, University of Han Yang, Seoul (2004).
  12. D. H. Lee, Y. K. Oh, and N. H. Kim, Proc. 5th Int. Conf. on Microelectro. Inter. (AVS, Santa Clara, USA, 2004) p. 177.