Restricted support vector quantile regression without crossing

  • Shim, Joo-Yong (Department of Applied Statistics, Catholic University of Daegu) ;
  • Lee, Jang-Taek (Department of Statistics, Dankook University)
  • Received : 2010.09.18
  • Accepted : 2010.11.17
  • Published : 2010.11.30

Abstract

Quantile regression provides a more complete statistical analysis of the stochastic relationships among random variables. Sometimes quantile functions estimated at different orders can cross each other. We propose a new non-crossing quantile regression method applying support vector median regression to restricted regression quantile, restricted support vector quantile regression. The proposed method provides a satisfying solution to estimating non-crossing quantile functions when multiple quantiles for high dimensional data are needed. We also present the model selection method that employs cross validation techniques for choosing the parameters which aect the performance of the proposed method. One real example and a simulated example are provided to show the usefulness of the proposed method.

Keywords

References

  1. Cawley, G. C., Talbot, N. L. C., Foxall, R. J., Dorling, S. R. and Mandic, D. P. (2004). Heteroscedastic kernel ridge regression. Neurocomputing, 57, 105-124. https://doi.org/10.1016/j.neucom.2004.01.005
  2. Cole, T. J. (1990). The LMS method for constructing normalized growth standards. European Journal of Clinical Nutrition, 44, 45-60.
  3. Hardle, W. (1989). Applied nonparametric regression, Cambridge, Cambridge University Press.
  4. He, X. (1997). Quantile curves without crossing. The American Statistician, 51, 86-192.
  5. Heagerty, P. J. and Pepe, M. S. (1999). Semiparametric estimation of regression quantiles with application to standardizing weight for height and age in US children. Applied Statistics, 48, Part 4, 533-551.
  6. Hwang, C. (2007). Kernel machine for Poisson regression. Journal of Korean Data & Information Science Society, 18, 767-772.
  7. Hwang, C. (2008). Mixed effects kernel binomial regression. Journal of Korean Data & Information Science Society, 19, 1327-1334.
  8. Koenker, R. and Bassett, G. (1978). Regression quantile. Econometrica, 46, 33-50. https://doi.org/10.2307/1913643
  9. Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. Proceedings of 2nd Berkeley Symposium. Berkeley, University of California Press, 481-492.
  10. Li, Y., Liu, Y. and Ji, Z. (2007). Quantile regression in reproducing kernel Hilbert spaces. Journal of the American Statistical Association, 102, 255-268. https://doi.org/10.1198/016214506000000979
  11. Mercer, J. (1909). Functions of positive and negative and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society A, 415-44.
  12. Shim, J. and Seok, K. H. (2008). Kernel poisson regression for longitudinal data. Journal of Korean Data & Information Science Society, 19, 1353-1360.
  13. Shim, J., Park, H. and Hwang, C. (2009). A kernel machine for estimation of mean and volatility functions. Journal of Korean Data & Information Science Society, 20, 905-912.
  14. Shim, J., Seok, K. H. and Hwang, C. (2009). Non-crossing quantile regression via doubly penalized kernel machine. Computational Statistics, 24, 83-94. https://doi.org/10.1007/s00180-008-0123-y
  15. Takeuchi, I. (2004). Non-crossing quantile regression curves by support vector and its efficient implementation. Proceedings of 2004 IEEE IJCNN, 1, 401-406.
  16. Takeuchi, I., Le, Q. V., Sears, T. D. and Smola, A. J. (2006). Nonparametric quantile estimation. Journal of Machine Learning Research, 7, 1231-1264.
  17. Vapnik, V. (1995). The nature of statistical learning theory, Springer-Verlag, New York.
  18. Yuan, M. (2006). GACV for quantile smoothing splines. Computational Statistics and Data Analysis, 50, 813-829. https://doi.org/10.1016/j.csda.2004.10.008