DOI QR코드

DOI QR Code

A Study on the Sloshing Reduction of a Cargo Fuel Tank with Baffle

배플을 적용한 Cargo용 연료탱크 내부의 슬로싱 저감 연구

  • 윤보현 (경원대학교 기계.자동차공학과) ;
  • 윤준규 (경원대학교 기계.자동차공학과) ;
  • 임종한 (경원대학교 기계.자동차공학과)
  • Received : 2010.06.28
  • Accepted : 2010.10.22
  • Published : 2010.11.30

Abstract

Recently sloshing that fluid in fuel tank is undulating by the external force during motion of automobile, ship and aircraft is greatly affecting by damaging the inside of structure. It's most important to precisely analyze the behavior of fluid by computational fluid dynamics for minimizing the effect of sloshing for the loaded fuel. This study characterized volume of fluid and pressure according to the length and number of vertical baffle and horizontal baffle in fuel tank for Kia Frontier cargo and analyzed for reduction of sloshing during driving on corner and hill by using ADINA-CFD. As a result of analysis, the optimum length for sloshing reduction shows 0.19 m for vertical baffle and 0.08 m for horizontal baffle. And it shows that vertical baffle is better for the reduction effect of sloshing during driving on corners, on the other hand, horizontal baffle is effective and stable during driving on hills.

최근 자동차, 선박, 항공기의 운행시 외력에 의해 연료탱크 내의 유체가 출렁거리는 슬로싱 현상으로 인하여 구조물 내부가 손상되어 큰 영향을 미치고 있다. 따라서 적재연료의 슬로싱 영향을 최소화하기 위해서 전산유체역학적으로 유체의 거동을 정확히 해석하는데 무엇보다 중요하다. 본 연구에서는 ADINA-CFD를 이용하여 Kia 프론티어 Cargo용 연료탱크에 수직배플과 수평배플의 길이 및 개수에 따른 유체유량 및 압력의 특성을 파악하고, 코너 및 언덕 주행시 슬로싱 감소를 위해 해석하였다. 그 결과로 슬로싱 감소효과를 위해 배플의 최적길이는 수직배플의 경우 0.19 m, 수평배플의 경우 0.08 m로 나타났다. 그리고 자동차주행 경우에 코너주행 시는 수직배플이 수평배플보다 슬로싱 감소효과를 보이는 반면에, 언덕주행 시는 수평배플이 효과적이며 안정성을 나타내었다.

Keywords

References

  1. T. Nakayama and K. Washizu, "The boundary element methods applied to the analysis of two-dimensional nonlinear sloshing problems," International Journal for Numerical Methods in Engineering, vol. 175, pp. 1631-1646, 1981.
  2. Z. Liu and Y. Huang, "A new method for large amplitude sloshing analysis problems," Journal Sound and Vibration, vol. 175, no. 2, pp. 185-195, 1994. https://doi.org/10.1006/jsvi.1994.1322
  3. D. M. Greaves, A. G. Borthwick, G. X. Wu and R. E. Taylor, "A moving boundary finite element method for fully nonlinear wave simulations," Journal of Ship Research, vol. 41, no. 3, pp. 181-194, 1997.
  4. W. Chen, M. A. Haroun and F. Liu, "Large amplitude sloshing in seismically excited tanks," Earthquake Engineering and Structural Dynamics, vol. 25, pp. 653-669, 1996. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<653::AID-EQE513>3.0.CO;2-H
  5. N. A. Silveira, D. G. Stephens and H. W. Leonard, "An experimental investigation of the damping of liquid oscillations in cylindrical tanks with various baffles," NASA TND-715, Langley Research Center, 1961.
  6. B. S. Yang, S. K. Jun and W. C. Kim, "An experimental study on the damping characteristics of liquid sloshing," KSPE, vol. 8, no. 1, pp. 96-104, 1991.
  7. Y. S. Lee, H. S. Kim, J. H. Lee, Y. W. Kim and S. H. Ko, "A study on the reduction of the sloshing of storage tank using wing and diaphragm baffle," KSME A, vol. 27, no. 12, pp. 2039-2046, 2003. https://doi.org/10.3795/KSME-A.2003.27.12.2039
  8. H. W. Lee and J. R Cho, "Characteristic analysis of nonlinear sloshing in baffled tank," KSME A, vol. 29. no. 11, pp. 1455-1462, 2005. https://doi.org/10.3795/KSME-A.2005.29.11.1455
  9. K. H. Chae and Y. L. Kim, "The improvement of fuel sloshing noise," KSAE07-S0151, pp. 971-976, 2007.
  10. S. H. Park, J. S. Song, J. C. Lee, B. S. Ko and J. S. Kim, "Modeling and analysis of sloshing vibration and nosie at fuel tanks," KSAE98-380090, pp. 563-568, 1998.
  11. J. R. Shin, K. S. Choi and S. Y. Kang, "An analytic solution to sloshing natural periods for a prismatic liquid cargo tank with baffles', KSOE, vol. 19, no. 6, pp. 16-21, 2005.
  12. J. R. Cho, H. W. Lee, S. Y. Ha, S. Y. Park and W. Y. Lee, "Dynamic response analysis nonlinear sloshing in two dimensional rectangular tank using finite element method," Trans. of Computational Structural Engineering. vol. 16, no. 1, pp. 33-42, 2003.
  13. Y. K. Kwack and S. H. Ko, "Computational fluid dynamics study on two-dimensional sloshing in rectangular tank," KSME B, vol. 27, no. 8, pp. 1142-1149, 2003. https://doi.org/10.3795/KSME-B.2003.27.8.1142
  14. 김광선, 최주열, 조대환, "장방형탱크 내부 슬로싱 현상에 대한 PIV적용에 관한 연구," 해양환경안전학회춘계학술발표회, pp. 85-86, 2009.