DOI QR코드

DOI QR Code

Application of Microbial Transglutaminase and Functional Ingredients for the Healthier Low-Fat/Salt Meat Products: A Review

건강지향의 저지방/저염 식육가공품을 위한 Microbial Transglutaminase와 기능성 소재 이용 기술

  • Lee, Hong-Chul (Department of Animal Science and Biotechnology Research Institute, Chonnam National University) ;
  • Chin, Koo-Bok (Department of Animal Science and Biotechnology Research Institute, Chonnam National University)
  • 이홍철 (전남대학교 동물자원학부 및 생물공학연구소) ;
  • 진구복 (전남대학교 동물자원학부 및 생물공학연구소)
  • Received : 2010.07.05
  • Accepted : 2010.11.04
  • Published : 2010.12.31

Abstract

The level of fat and salt can affect the product quality and storage stability of processed meats. Additionally, consumers' demands require dietary guidelines for developing low-fat/salt functional foods. Microbial transglutaminase (MTGase), which enhances textural properties by catalyzing protein-protein cross-linkages, was introduced to develop healthier lowfat/salt meat products. The potential possibilities of low-fat/salt processed meats were reviewed under optimal conditions for functional ingredients from several previous studies. The addition of non-meat protein (e.g. sodium caseinate and soy protein isolates), hydrocolloids (e. g. konjac flour, carrageenan, and alginates), and MTGase alone or in combination with other functional ingredients improved textural and sensory properties similar to those of regularly processed meats. When MTGase was combined with hydrocolloids (konjac flour or sodium alginate) or other functional ingredients, gelling properties of meat protein were improved even at a low salt level. Based on these reviews, functional ingredients combined with new processing technologies could be incorporated into processed meats to improve the functionality of various low-fat/salt meat products.

Keywords

References

  1. AHA (2000) American heart association guidelines: revision 2000. Circulation 102, 2284-2299. https://doi.org/10.1161/01.CIR.102.18.2284
  2. AHA (2006) Soy protein, isoflavones, and cardiovascular health. Circulation 113, 1034-1044. https://doi.org/10.1161/CIRCULATIONAHA.106.171052
  3. Ajinomoto (2009) Products, $ACTIVA^{\circledR}$ transglutaminase - product applications. Ajinomoto Food Ingredients LLC.
  4. Arihara, K. (2006) Strategies for designing novel functional meat products. Meat Sci. 74, 219-229. https://doi.org/10.1016/j.meatsci.2006.04.028
  5. Brewer, M. S., Rostogi, B. K., Argoudelis, L., and Sprouls, G. K. (1995) Sodium lactate/sodium chloride effects on aerobic plate counts and color of aerobically packaged ground pork. J. Food Sci. 60, 58-62. https://doi.org/10.1111/j.1365-2621.1995.tb05606.x
  6. Carballo, J., Barreto, G., and Jimenez-Colmenero, F. (1995) Starch and egg white influence on properties of bologna sausage as related to fat content. J. Food Sci. 60, 673-677. https://doi.org/10.1111/j.1365-2621.1995.tb06204.x
  7. Casella, L. J. (1983) Whey use in meat products. Meat Process, 7, 76-79.
  8. Chin, K. B. and Ahn, E. H. (2005) Evaluation of sodium lactate and potassium lactate on the quality characteristics and shelf-life of low-fat sausage during refrigerated storage. Korean J. Food Sci. Ani. Resour. 25, 52-59.
  9. Chin, K. B. and Chung, B. K. (2002) Development of low-fat meat processing technology using interactions between meat proteins and hydrocolloids - I. optimization of interactions between meat proteins and hydrocolloids by model study. J. Korean Soc. Food Sci. Nutr. 31, 438-444. https://doi.org/10.3746/jkfn.2002.31.3.438
  10. Chin, K. B. and Lee, H. C. (2002) Development of low-fat meat processing technology using interaction between meat proteins and hydrocolloids - II. development of low-fat sausages using the results of model study. J. Korean Soc. Food Sci. Nutr. 31, 629-635. https://doi.org/10.3746/jkfn.2002.31.4.629
  11. Chin, K. B., Go, M. Y., and Xiong, Y. L. (2009a) Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: effect of salt level and transglutaminase incubation. Meat Sci. 81, 565-572. https://doi.org/10.1016/j.meatsci.2008.10.012
  12. Chin, K. B., Go, M. Y., and Xiong, Y. L. (2009b) Effect of soy protein substitution for sodium caseinate on the transglutaminase-induced cold and thermal gelation of myofibrillar protein. Food Res. Int. 42, 941-948. https://doi.org/10.1016/j.foodres.2009.05.008
  13. Chin, K. B., Kim, K. H., and Lee, H. C. (2006) Physico-chemical and textural properties, and microbial counts of meat products sold at Korean markets. Korean J. Food Sci. Ani. Resour. 26, 98-105.
  14. Chin, K. B., Lee, H. L., Kook, S. H., Yoo, S. S., and Chun, S. S. (2004) Evaluation of various combinations of pork lean and water added on the physicochemical, textural and sensory characteristics of low-fat sausages. Food Sci. Biotechnol. 13, 481-485.
  15. Duranti, M. and Gius, C. (1997) Legume seeds: protein content and nutritional value. Field Crops Res. 53, 31-45. https://doi.org/10.1016/S0378-4290(97)00021-X
  16. Ellekjaer, M. R., Naes, T., and Baardseth, P. (1996) Milk proteins affect yield and sensory quality of cooked sausages. J. Food Sci. 61, 660-666. https://doi.org/10.1111/j.1365-2621.1996.tb13181.x
  17. Food and Drug Administration (2008) Food labeling guide. Available from: http://www.fda.gov.
  18. Feng, J. and Xiong, Y. L. (2002) Interaction of myofibrillar and preheated soy proteins. J. Food Sci. 67, 2851-2856. https://doi.org/10.1111/j.1365-2621.2002.tb08827.x
  19. Fischer, N. and Widder, S. (1997) How protein influence food flavor. Food Technol. 51, 68-70.
  20. Food Standards Agency (2010) Healthy diet. Available from: http://www.eatwell.gov.uk.
  21. Gardze, C., Bowers, J. A., and Caul, J. F. (1979) Effect of salt and textured soy level on sensory characteristics of beef patties. J. Food Sci. 44, 460-464. https://doi.org/10.1111/j.1365-2621.1979.tb03812.x
  22. Gillette, M. (1985) Flavor effects of sodium chloride. Food Technol. 39, 47-52.
  23. Girard, J. P., Culioli, J., Maillard, T., Denoyer, C., and Touraille, C. (1990) Influence of technological parameters on the structure of the batter and the texture of frankfurter type sausages. Meat Sci. 27, 13-28. https://doi.org/10.1016/0309-1740(90)90025-2
  24. Goldberg, I. (1994) Functional foods; designer foods, pharmafoods, nutraceuticals. Champman and Hall, NY, pp. 1-16.
  25. Gordon, A. and Barbut, S. (1992) Effect of chloride salts on protein extraction and interfacial protein film formation in meat batters. J. Sci. Food Agric. 58, 227-238. https://doi.org/10.1002/jsfa.2740580211
  26. Hong, G. P. and Chin, K. B. (2009) Optimisation of calcium alginate and microbial transglutaminase systems to form a porcine myofibrillar protein gel. Korean J. Food Sci. Ani. Resour. 29, 590-598. https://doi.org/10.5851/kosfa.2009.29.5.590
  27. Hong, G. P. and Chin, K. B. (2010) Effects of microbial transglutaminase and sodium alginate on cold-set gelation of porcine myofibrillar protein with various salt levels. Food Hydrocolloids 24, 444-451. https://doi.org/10.1016/j.foodhyd.2009.11.011
  28. Hongsprabhas, P. and Barbut, S. (1999) Effect of pre-heated whey protein level and salt on texture development of poultry meat batters. Food Res. Int. 32, 145-149. https://doi.org/10.1016/S0963-9969(99)00065-4
  29. Hughes, E., Cofrades, S., and Troy, D. J. (1997) Effects of fat level, oat fibre and carrageenan on frankfurters formulated with 5, 12 and 30% fat. Meat Sci. 45, 273-281. https://doi.org/10.1016/S0309-1740(96)00109-X
  30. Hwang, J. S., Lee, H. C., and Chin, K. B. (2008) Rheological properties of pork myofibrillar protein and sodium caseinate mixture as affected by transglutaminase with various incubation temperatures and times. Korean J. Food Sci. Ani. Resour. 28, 154-159. https://doi.org/10.5851/kosfa.2008.28.2.154
  31. Jang, A., Chae, H. S., Yoo, Y. M., Ham, J. S., Jeong, S. G., Lee, S. G., Ahn, C. N., Kim, D. H., Lee, S. K., and Lee, E. S. (2009) A study on the health benefits labeling for livestock products. Korean J. Food Sci. Ani. Resour. 29, 599-611. https://doi.org/10.5851/kosfa.2009.29.5.599
  32. Jaros, D., Partschefeld, C., Henle, T., and Rohm, H. (2006) Transglutaminase in dairy products: chemistry, physics, applications (invited review). J. Texture Studies 37, 113-155. https://doi.org/10.1111/j.1745-4603.2006.00042.x
  33. Jimenez-Colmenero, F., Carballo, J., and Cofrades, S. (2001) Healthier meat and meat products: their role as functional foods. Meat Sci. 59, 5-13. https://doi.org/10.1016/S0309-1740(01)00053-5
  34. Kashiwagi, T., Yokoyama, K., Ishikawa, K., Ono, K., Ejima, D., Matsui, H., and Suzuki, E. (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J. Biol. Chem. 277, 44252-44260. https://doi.org/10.1074/jbc.M203933200
  35. Kim, I. S., Jin, S. K., and Hah, K. H. (2004) Quality comparison of sausage and can products in Korean market. Korean J. Food Sci. Ani. Resour. 24, 50-56.
  36. Ko, K. P., Park, S. K., Park, B., Yang, J. J., Cho, L. Y., Kang, C., Kim, C. S., Gwack, J., Shin, A., Kim, Y., Kim, J., Yang, H. K., Kang, D., Chang, S. H., Shin, H. R., and Yoo, K. Y. (2010) Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean multicenter cancer cohort. Cancer, Epidemiol., Biomarkers Prev. 19, 1292-1300. https://doi.org/10.1158/1055-9965.EPI-09-1004
  37. Kuhn, J., Zhu, X. Q., Considine, T., and Singh, H. (2007) Binding of 2-nonanone and milk proteins in aqueous model systems. J. Agric. Food Chem. 55, 3599-3604. https://doi.org/10.1021/jf063517o
  38. Kuraishi, C., Sakamoto, J., Yamazaki, K., Susa, Y., Kuhara, C., and Soeda, T. (1997) Production of restructured meat using microbial transglutaminase without salt or cooking. J. Food Sci. 62, 488-490, 515. https://doi.org/10.1111/j.1365-2621.1997.tb04412.x
  39. Kuraishi, C., Yamazaki, K., and Susa, Y. (2001) Transglutaminase: its utilization in the food industry. Food Rev. Int. 17, 221-246. https://doi.org/10.1081/FRI-100001258
  40. Larkin, T. Price, W. E., and Astheimer, L. (2008) The key importance of soy isoflavone bioavailability to understanding health benefits. Crit. Rev. Food Sci. Nutr. 48, 538-552. https://doi.org/10.1080/10408390701542716
  41. Lee, H. C. and Chin, K. B. (2004) Reduction of tumbling time and improvement of shear value for the manufacture of restructured hams using transglutaminase. Korean J. Food Sci. Ani. Resour. 24, 23-28.
  42. Lee, H. C. and Chin, K. B. (2009a) Physicochemical, textural, and sensory properties of low-fat/reduced-salt sausages as affected by salt levels and different type and level of milk proteins. Food Sci. Biotechnol. 18, 36-42.
  43. Lee, H. C. and Chin, K. B. (2009b) Effect of transglutaminase, acorn, and mungbean powder on quality characteristics of low-fat/salt pork model sausages. Korean J. Food Sci. Ani. Resour. 29, 374-381. https://doi.org/10.5851/kosfa.2009.29.3.374
  44. Lee, H. C., Hwang, J. S., and Chin, K. B. (2005) Evaluation of physico-chemical and textural properties, and sensory evaluation of low-fat/salt restructured ham with milk proteins. Proceed. 51st Int. Cong. Meat Sci. Technol., Baltimore, USA, pp. 47.
  45. Lee, H. C., Hwang, J. S., and Chin, K. B. (2006) Product quality of loin hams manufactured with various salt levels. Proceed. 52nd Int. Cong. Meat Sci. Technol., Dublin, Ireland, pp. 427-428.
  46. Lushbough, C. H. and Schweigert, B. S. (1959) The science of meat and meat products. W. H. Freeman and Company, San Francisco, pp. 185-211.
  47. Marsh, A. C. (1983) Processes and formulations that affect the sodium content of foods. Food Technol. 37, 45-49.
  48. Martins, V. B. and Netto, F. M. (2006) Physicochemical and functional properties of soy protein isolate as a function of water activity and storage. Food Res. Int. 39, 145-153. https://doi.org/10.1016/j.foodres.2005.07.001
  49. Matulis, R. J., McKeith, F. K., Sutherland, J. W., and Brewer, S. (1995) Sensory characteristics of frankfurters as affected by fat, salt, and pH. J. Food Sci., 60, 42-47. https://doi.org/10.1111/j.1365-2621.1995.tb05603.x
  50. McClements, D. J. and Decker, E. A. (2007) Lipids. In: Fennema's food chemistry. Damodaran, S., Parkin, K. L., and Fennema, O. R. (eds), CRC Press, NY, USA, pp. 155-216.
  51. Motoki, M. and Seguro, K. (1998) Transglutaminase and its use for food processing. Trends in Food Sci. Technol. 9, 204-210. https://doi.org/10.1016/S0924-2244(98)00038-7
  52. Pearson, A. M. and Wolzak, A. M. (1982) Salt, its use in animal products - a human health dilemma. J. Anim. Sci. 54, 1263-1278.
  53. Pietrasik, Z. and Duda, Z. (2000) Effect of fat content and soy protein/carrageenan mix on the quality characteristics of comminuted, scalded sausages. Meat Sci. 56, 181-188. https://doi.org/10.1016/S0309-1740(00)00038-3
  54. Pszczola, D. E. (1999) Ingredients that get to the meat of the matter. Food Technol. 53, 62-74.
  55. Puolanne, E. J., Ruusunen, M. H., and Vainionpaa, J. I. (2001) Combined effects of NaCl and raw meat pH on water-holding in cooked sausage with and without added phosphate. Meat Sci. 58, 1-7. https://doi.org/10.1016/S0309-1740(00)00123-6
  56. Rakosky, J. (1970) Soy products for the meat industry. J. Agri. Food Chem. 18, 1005-1009. https://doi.org/10.1021/jf60172a032
  57. Ramirez-Suarez, J. C. and Xiong, Y. L. (2003) Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/ soy protein mixtures. Meat Sci. 65, 899-907. https://doi.org/10.1016/S0309-1740(02)00297-8
  58. Romans, J. R., Costello, W. J., Carlson, C. W., Greaser, M. L., and Jones, K. W. (1994) The meat we eat. 13th ed, Interstate Publisher, Inc, IL, USA, pp. 924-963.
  59. Ruusunen, M., Sarkka-Tirkkonen, M., and Puolanne, E. (1999) The effect of salt reduction on taste pleasantness in cooked 'bologna-type' sausages. J. Sensory Studies 14, 263-270. https://doi.org/10.1111/j.1745-459X.1999.tb00116.x
  60. Ruusunen, M., Vainionpaa, J., Lyly, M., Lahteenmaki, L., Niemisto, M., Ahvenainen, R., and Puolanne, E. (2005) Reducing the sodium content in meat products: the effect of the formulation in low-sodium ground meat patties. Meat Sci. 69, 53-60. https://doi.org/10.1016/j.meatsci.2004.06.005
  61. Ruusunen, M., Vainionpaa, J., Puolanne, E., Lyly, M., Lahteenmaki, L., Niemisto, M., and Ahvenainen, R. (2003) Physical and sensory properties of low-salt phosphate-free frankfurters composed with various ingredients. Meat Sci. 63, 9-16. https://doi.org/10.1016/S0309-1740(02)00044-X
  62. Su, Y. K., Bowers, J. A., and Zayas, J. F. (2000) Physical characteristics and microstructure of reduced-fat frankfurters as affected by salt and emulsified fats stabilized with nonmeat proteins. J. Food Sci. 65, 123-128. https://doi.org/10.1111/j.1365-2621.2000.tb15966.x
  63. Terrell, R. N. (1983) Reducing the sodium content of processed meats. Food Technol. 37, 66-71.
  64. Troutt, E. S., Hunt, M. C., Johnson, D. E., Claus, J. R., Kastner, C. L., Kropf, D. H., and Stroda, S. (1992) Chemical, physical and sensory characterization of ground beef containing 5 to 30 percent fat. J. Food Sci. 57, 25-29. https://doi.org/10.1111/j.1365-2621.1992.tb05416.x
  65. Van den Hoven, M. (1987) Functionality of dairy ingredients in meat products. Food Technol. 41, 72-77, 103.
  66. WCRF (2007a) Food, nutrition, physical activity, and the prevention of cancer: a global perspective, World Cancer Research Fund International, London, pp. 135-140.
  67. WCRF (2007b) Food, nutrition, physical activity, and the prevention of cancer: a global perspective, World Cancer Research Fund International, London, pp. 141-147.
  68. Yong, E. Z., Choi, Y. S., and Lee, K. T. (2009) A survey on the perception and usage status of dietitians in food service business for meat products. Korean J. Food Sci. Ani. Resour. 29, 121-131. https://doi.org/10.5851/kosfa.2009.29.1.121
  69. 식품의약품안전청 (2002) 식품공전 - 5. 식육제품, pp. 217-220.
  70. 식품의약품안전청 (2010) 영양표시기준 - 5. 영양소함량 강조표시기준 (6. 나트륨). Available from: http://nutrition.kfda.go.kr.

Cited by

  1. Optimization for Reduced-Fat / Low-NaCl Meat Emulsion Systems with Sea Mustard (Undaria pinnatifida) and Phosphate vol.35, pp.4, 2015, https://doi.org/10.5851/kosfa.2015.35.4.515
  2. Producion of low salt frankfurter with microbial transglutaminase vol.43, pp.Supplement 1, 2014, https://doi.org/10.1556/AAlim.43.2014.Suppl.7
  3. Microbial Transglutaminase in Noodle and Pasta Processing 2017, https://doi.org/10.1080/10408398.2017.1367643
  4. Evaluation of Porcine Myofibrillar Protein Gel Functionality as Affected by Microbial Transglutaminase and Red Bean [Vignia angularis] Protein Isolate at Various pH Values vol.35, pp.6, 2015, https://doi.org/10.5851/kosfa.2015.35.6.841
  5. Effects of fat levels and rice bran fiber on the chemical, textural, and sensory properties of frankfurters vol.24, pp.2, 2015, https://doi.org/10.1007/s10068-015-0064-5
  6. Combined Effects of Sea Mustard and Transglutaminase on the Quality Characteristics of Reduced-Salt Frankfurters vol.41, pp.3, 2017, https://doi.org/10.1111/jfpp.12945
  7. Enzymatic characterization of transglutaminase from Streptomyces mobaraensis DSM 40587 in high salt and effect of enzymatic cross-linking of yak milk proteins on functional properties of stirred yogurt vol.95, pp.7, 2012, https://doi.org/10.3168/jds.2011-5125
  8. Reducing the fat content in ground beef without sacrificing quality: A review vol.91, pp.4, 2012, https://doi.org/10.1016/j.meatsci.2012.02.024
  9. Effect of red bean protein isolate and salt levels on pork myofibrillar protein gels mediated by microbial transglutaminase vol.76, 2017, https://doi.org/10.1016/j.lwt.2016.10.039
  10. Quality Characteristics of Low-fat Sausages containing Lentinus edodes powder and a Fat Replacer vol.49, pp.5, 2015, https://doi.org/10.14397/jals.2015.49.5.257
  11. Chinese consumers’ willingness-to-pay for nutrition claims on processed meat products, using functional sausages as a food medium vol.13, pp.2, 2021, https://doi.org/10.1108/caer-06-2020-0160