DOI QR코드

DOI QR Code

Growth Performance and Meat Quality of Broiler Chicks Fed Germinated and Fermented Soybeans

  • Lee, Dan-Won (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Shin, Jin-Ho (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Park, Jung-Min (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Song, Jae-Chul (Department of Food and Nutrition, Ulsan University) ;
  • Suh, Hyung-Joo (Department of Food and Nutrition, Korea University) ;
  • Chang, Un-Jae (Department of Food and Nutrition, Dongduk Women's University) ;
  • An, Byoung-Ki (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Kang, Chang-Won (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Kim, Jin-Man (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • Received : 2010.10.13
  • Accepted : 2010.12.06
  • Published : 2010.12.31

Abstract

This study was conducted to investigate the dietary effects of germinated and fermented (with Monascus pupureus) soybean screenings (GFS) on growth performance and meat quality in broiler chicken. A total of 750 1-day-old Ross ${\times}$ Ross male broiler chicks were randomly allocated into five groups (five replications with 30 birds each) and fed experimental diets for 5 wks as follows: Group 1, negative-control (antibiotics-free diet); Group 2, positive-control (negative-control with 10 ppm of Avilamycin); Group 3, negative-control with 0.3% GFS; Group 4, negative-control with 0.5% GFS; Group 5, negative-control with 1% GFS. The final body weight of each group fed a diet containing 1% GFS was significantly higher than that of the negative-control group. The feed conversion ratios of all groups fed diets containing GFS and the positivecontrol group were significantly improved compared to the negative-control group during the whole period (p<0.05). The relative weights of various organs along with the activities of serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) were not influenced by the dietary treatments. The levels of total serum cholesterol in groups fed diets containing 0.5% and 1% GFS were more significantly lowered compared to those of the control groups without GFS (p<0.05). There were no significant differences in the cecal microflora profiles among the groups. Further, the dietary treatments did not influence the physico-chemical properties of the edible meat, including the shear force, pH, meat color (CIE $L^*$, $a^*$ and $b^*$), and content of malondialdehyde (MDA). Cooking loss of breast muscle in the groups fed GFS was significantly lowered compared to that of the negative control group (p<0.05). These results indicate that dietary GFS could improve growth performance in broiler chicken and may affect meat quality in some instances.

Keywords

References

  1. Ali. A., Velasquez, M. T., Hansen, C. T., Mohamed, A. I., and Bhathena, S. J. (2004) Effects of soybean isoflavones, probiotics, and their interactions on lipid metabolism and endocrine system in an animal model of obesity and diabetes. J. Nutr. Biochem. 15, 583-590. https://doi.org/10.1016/j.jnutbio.2004.04.005
  2. Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E., Vassilopoulos, V. N., Mantis, A. J., and Trakatellis, A. G. (1994) Rapid, sensitive, and specific thiobarbituri acid method for measuring lipid peroxidation in animal tissue, food, and feedstuff samples. J. Agric. Food Chem. 42, 1931-1937. https://doi.org/10.1021/jf00045a019
  3. Chah, C. C., Carlson, C. W., Semeniuk, G., Palmerand, I. S., and Hesseltine, C. W. (1975) Growth-promoting effects of fermented soybeans for broilers. Poult. Sci. 54, 600-609. https://doi.org/10.3382/ps.0540600
  4. Chairote, E, Chairote, G., Niamsup, H., and Lumyong, S. (2008) The presence and the content of monacolins in red yeast rice prepared from Thai glutinous rice. World J. Microbiol. Biotechnol. 24, 3039-3047. https://doi.org/10.1007/s11274-008-9850-z
  5. Demonty, I., Lamarche, B., and Jones, P. J. H. (2003) Role of isoflavones in the hypocholesterolemic effect of soy. Nutr. Rev. 61, 189-203. https://doi.org/10.1301/nr.2003.jun.189-203
  6. Diaz, G. J., Roldan, L. P., and Cortes, A. (2003) Intoxication of Crotalaria pallida seeds to growing broiler chicks. Vet. Hum. Toxicol. 45, 187-189.
  7. Gardner, C. D., Newell, K. A., Cherin, R., and Haskell, W. L. (2001) The effect of soy protein with or without isoflavones relative to milk protein on plasma lipids in hypercholesterolemic postmenopausal women. Am. J. Clin. Nutr. 73, 738-745.
  8. Goodman-Gruen, D. and Kritz-Silverstein, D. (2001) Usual dietary isoflavone intake is associated with cardiovascular disease risk factor in postmenopausal women. J. Nutr. 131, 1202-1206.
  9. Huang, C. F., Li, T. C., Lin, C. C., Liu, C. S., Shih, S. C., and Lai, M. M. (2007) Efficacy of Monascus purpureus Went rice on lowering lipid ratios in hypercholesterolemic patients. Eur. J. Cardiovasc. Prev. Rehabil. 4, 438-240.
  10. Hellendoorn, E. W. (1976) Beneficial physiologic action of beans. J. Am. Diet Assoc. 69, 248-253.
  11. Jiang, Z. Y., Jiang, S. Q., Lin, Y. C., Xi, P. B., Yu, D. Q., and Wu, T. X. (2007) Effects of soybean isoflavone on growth performance, meat quality, and antioxidation in male broilers. Poult. Sci. 86, 1356-1362. https://doi.org/10.1093/ps/86.7.1356
  12. Juzlova, P., Martinkova, L., and Kern, V. (1996) Secondary metabolites of the fungus Monascus. a review. J. Ind. Microbiol. Biotechnol. 16, 163-170.
  13. Kraiak, S., Yamamura, K., Irie, R., Nakajima, M., Shimizu, H., and Chim-Anage, P. (2000) Maximizing yellow pigment production in fed-batch culture of Monascus sp. J. Biosci. Bioeng. 90, 363-367. https://doi.org/10.1016/S1389-1723(01)80002-5
  14. Lawrie, R. A. (1991) Meat Science (5th ed.) Pergamon Press, Oxford, UK.
  15. Lee, C. L., Hung, H. K., Wang, J. J., and Pan, T. M. (2007) Improving the ratio of monacolin K to citrinin production of Monascus purpureus NTU568 under Dioscorea medium through the mediation of pH value and ethanol addition. J. Agric. Food Chem. 55, 6493-6502. https://doi.org/10.1021/jf0711946
  16. Lin, C. C., Lil, T. C., and Lai, M. M. (2005) Efficacy and safety of Monascus purpureus Went rice in subjects with hyperlipidemia. Eur. J. Endocrinol. 153, 679-86. https://doi.org/10.1530/eje.1.02012
  17. Lumeij, J. T. (1997) In: Clinical Biochemistry of Domestic Animals (ed. J. J. Kanebo, J. W. Harvey, and M. L. Bruss, 5th) Avian Clinic. Biochem. Academic Press 857-883.
  18. Min, B. J., Cho, J. H., Chen, Y. J., Kim, H. J., Yoo, J. S., Wang, Q., Kim, I. H., Cho, W. T., and Lee, S. S. (2009) Effects of replacing soy protein concentrate with fermented soy protein in starter diet on growth performance and ileal amino acid digestibility in weaned pigs. Asian-Aust. J. Anim. Sci. 22, 99-106. https://doi.org/10.5713/ajas.2009.70306
  19. NRC (National Research Council) (1994) Nutrients Requirements of Poultry. 9th rev. ed. National Academic Press, Washington, DC.
  20. Payne, R. L., Bidner, T. D., Southern, L. L., and Geaghan, J. P. (2001a). Effects of dietary soy isoflavones on growth, carcass traits, and meat quality in growing-finishing pigs. J. Anim. Sci. 79, 1230-1239.
  21. Payne, R. L., Bidner, T. D., Southern, L. L., and McMillin, K. W. (2001b) Dietary effects of soy isoflavones on growth and carcass traits of commercial broilers. Poult. Sci. 80, 1201-1207. https://doi.org/10.1093/ps/80.8.1201
  22. Peric, L., Milosevic, N., Zikic, D., Kanacki, Z., Dzinic, N., Nollet, L., and Spring, P. (2009) Effect of selenium sources on performance and meat characteristics of broiler chickens. J. Appl. Poult. Res. 18, 403-409. https://doi.org/10.3382/japr.2008-00017
  23. Rehfeldt, C., Adamovic, I., and Kuhn, G. (2007) Effects of dietary daidzein supplementation of pregnant sows on carcass and meat quality and skeletal muscle cellularity of the progeny. Meat Sci. 75, 103-111. https://doi.org/10.1016/j.meatsci.2006.06.028
  24. Ruiz-Larrea, M. B., Mohan, A. R., Paganga, G., Miller, N. J., Bolwell, G. P., and Rice-Evans, C. A. (1997) Antioxidant activity of phytoestrogenic isoflavones. Free Radic. Res. 26, 63-70. https://doi.org/10.3109/10715769709097785
  25. SAS. (2002) SAS User's guide. Statistics, ver. 8.e, Statistical Analysis System Institute. Inc., Cary, NC. USA.
  26. Shin, J. H., Park, J. M., Bak, D. J., Jeon, W. M., Song, J. C., Kim, S. K., An, B. K., Kang, C. W., Jung, W. S., and Kim, J. M. (2008) Effects of germinated and fermented unmarketable soybean on laying performance and egg quality in laying hens. Korean. J. Food Sci. Ani. Resour. 28, 667-674. https://doi.org/10.5851/kosfa.2008.28.5.667
  27. Tikkanen, M. J., Wahala, K., Ojala, S., Vihma, V., and Adlercreutz, H. (1998) Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc. Natl. Acad. Sci. USA 95, 3106-3110. https://doi.org/10.1073/pnas.95.6.3106
  28. Tuohy, K. M., Ziemer, C. J., Klinder, A., Knobel, Y., Pool- Zobel, B. L., and Gibson, G. R. (2002) A human volunteer study to determine the probiotic effects of lactulose powder on human colonic microbiota. Microb. Ecol. Health Dis. 14, 165-173. https://doi.org/10.1080/089106002320644357
  29. Urbano, G., Aranda, P., Vilchez, A., Aranda, C., Cabrera, L., and Porres, J. S. M. (2005) Effects of germination on the composition and nutritive value of proteins in Pisum sativum, L. Food Chem. 93, 671-679. https://doi.org/10.1016/j.foodchem.2004.10.045
  30. Van, T. P. (1884) Monascus, genre nouveau de l'ordre des Ascomycetes. Bulletin de la Societe de France 31, 26-31.
  31. Wiseman, H., O'Reilly, J. D., Adlercreutz, H., Mallet, A. I., Bowey, E. A., Rowland, I. R., and Sanders, T. A. (2000) Isoflavone phytoestrogens consumed in soy decrease F(2)-isoprostane concentrations and increase resistance of lowdensity lipoprotein to oxidation in humans. Am. J. Clin. Nutr. 72, 395-400.
  32. Yousef, M. I., Kamel, K. I., Esmail, A. M., and Baghdadi, H. H. (2004) Antioxidant activities and lipid lowering effects of isoflavone in male rabbits. Food Chem. Toxicol. 42, 1497-1503. https://doi.org/10.1016/j.fct.2004.04.012
  33. Zamora, R. G. and Veum, T. L. (1979) Whole soybeans fermented with Aspergillus oryzae and Phizopus oligosporus for growing pigs. J. Anim. Sci. 48, 63-68.
  34. Zanabria, E. R., Katarzyna, N., De Jong, L. E. Q., Birgit, H. B. E., and Robert, M. J. N. (2006) Effect of food processing of pearl millet (Pennisetum glaucum) IKMP-5 on the level of phenolic, phytate, iron and zinc. J. Sci. Food Agric. 86, 1391-1398. https://doi.org/10.1002/jsfa.2527

Cited by

  1. Comparison of Growth Performance, Carcass Characteristics and Meat Quality of Korean Local Chickens and Silky Fowl vol.27, pp.3, 2014, https://doi.org/10.5713/ajas.2013.13638
  2. Growth Performance, Relative Meat and Organ Weights, Cecal Microflora, and Blood Characteristics in Broiler Chickens Fed Diets Containing Different Nutrient Density with or without Essential Oils vol.29, pp.4, 2016, https://doi.org/10.5713/ajas.15.0426
  3. Preparation of fish waste silage and its effect on the growth performance and meat quality of broiler chickens vol.98, pp.11, 2010, https://doi.org/10.1002/jsfa.8926