Dispersion Polymerization of Acrylate Monomers in Supercritical $CO_2$ using GMA-functionalized Reactive Surfactant

초임계 이산화탄소에서 Glycidyl methacrylate 반응성 계면활성제를 이용한 아크릴레이트의 분산중합

  • Received : 2010.07.20
  • Accepted : 2010.10.18
  • Published : 2010.12.31

Abstract

Dispersion polymerization of methyl acrylate, ethyl acrylate, butyl acrylate, and glycidyl methacrylate were performed in supercritical $CO_2$ at $80\;^{\circ}C$ and 346 bar. Glycidyl methacrylate linked poly(dimethylsiloxane) (GMS-PDMS) surfactant, which was prepared by linking glycidyl methacrylate to monoglycidyl ether terminated PDMS with amino-propyltriethoxysilane, was used as surfactant for the dispersion polymerization in $CO_2$. The yield of the poly(alkyl acrylate) polymers, synthesized in $CO_2$ medium, decreased as the alkyl tail of the acrylate monomers increased. Poly(glycidyl methacrylate) and poly(methyl acrylate) were produced in bead form whereas poly(ethyl acrylate) and poly(butyl acrylate) were viscous liquid. The poly(glycidyl methacrylate) particles had a number average diameter of 2.45 ${\mu}m$ and monodisperse distribution. The poly(methyl acrylate) had a number average diameter of 0.52 ${\mu}m$ and the particle size distribution was bimodal. The glass transition temperatures ($T_g$) of the poly(glycidyl methacrylate) and the poly(alkyl acrylate) products were 4~9 K higher than the $T_g$ of the corresponding acrylate polymers synthesized in conventional processes.

[ $80\;^{\circ}C$ ] 346 bar 상태의 초임계 이산화탄소 내에서 methyl acrylate, ethyl acrylate, butyl acrylate와 glycidyl methacrylate을 중합하였다. 초임계 이산화탄소 분산매에서의 중합을 위하여 aminopropyltriethoxysilane을 사용하여 glycidyl methacrylate를 monoglycidyl ether terminated PDMS에 결합시킨 glycidyl methacrylate linked poly(dimethylsiloxane)(GMS-PDMS)를 계면활성제로 사용하였다. $CO_2$에서 합성된 Poly(alkyl acrylate)의 수율은 acrylate 단량체의 알킬기가 커질수록 낮아졌다. Poly(glycidyl methacrylate)와 poly(methyl acrylate)는 구형으로 만들어진 반면, poly(ethyl acrylate)와 poly(butyl acrylate)는 점성의 액상으로 합성되었다. Poly(glycidyl methacrylate) 입자의 수평균직경은 2.45 ${\mu}m$이며 입자 직경의 분포는 매우 좁았다. poly(methyl acrylate)의 수평균직경은 0.52 ${\mu}m$이며 입자크기는 bimodal로 분포되었다. 초임계 이산화탄소에서 중합된 poly(glycidyl methacrylate)와 poly(alkyl acrylate)들의 유리전이온도는 통상의 방법으로 중합된 poly(glycidyl methacrylate)와 poly(alkyl acrylate)의 유리전이온도보다 4~9 K 높게 측정되었다.

Keywords

References

  1. K. K. Kapellen, C. D. Mistele, and J. M. DeSimone, "Synthesis of Poly(2,6-dimethylphenylene oxide) in Carbon Dioxide", Macromolecules, 29, 495 (1996). https://doi.org/10.1021/ma951299m
  2. D. A. Canelas and J. M. DeSimone, "Dispersion Polymerizations of Styrene in Carbon Dioxide Stabilized with Poly(styrene- b-dimethylsiloxane)", Macromolecules, 30, 5673 (1997). https://doi.org/10.1021/ma970579u
  3. H. M. Woods, C. Nouvel, P. Licence, D. J. Irvine, and S. M. Howdle, "Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide: An Investigation into Stabilizer Anchor Group", Macromolecules, 38, 3271 (2005). https://doi.org/10.1021/ma048406+
  4. M. R. Giles, R. M. T. Griffiths, A. Aguiar-Ricardo, M. M. C. G. Silva, and S. M. Howdle, "Fluorinated Graft Stabilizers for Polymerization in Supercritical Carbon Dioxide: The Effect of Stabilizer Architecture", Macromolecules, 34, 20 (2001). https://doi.org/10.1021/ma001369b
  5. J. M. DeSimone, E. E. Maury, Y. Z. Menceloglu, J. B. McClain, T. J. Romack, and J. R. Combes, "Dispersion Polymerizations in Supercritical Carbon Dioxide", Science, 265, 356 (1994). https://doi.org/10.1126/science.265.5170.356
  6. Y. L. Hsiao, E. E. Maury, and J. M. DeSimone, "Dispersion polymerization of methyl-methacrylate stabilized with poly (1,1-dihydroperfluorooctyl acrylate) in supercritical carbon- dioxide", Macromolecules, 28, 8159 (1995). https://doi.org/10.1021/ma00128a028
  7. C. Lepilleur and E. J. Beckman, "Dispersion polymerization of methyl methacrylate in supercritical $CO_2$", Macromolecules, 30, 745 (1997). https://doi.org/10.1021/ma960764s
  8. P. Christian, M. R. Giles, R. M. T. Griffiths, D. J. Irvine, R. C. Major, and S. M. Howdle, "Free Radical Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide Using a Pseudo-Graft Stabilizer: Effect of Monomer, Initiator, and Stabilizer Concentrations", Macromolecules, 33, 9222 (2000). https://doi.org/10.1021/ma0008948
  9. K. A. Shaffer, T. A. Jones, D. A. Canelas, and J. M. DeSimone, "Dispersion Polymerizations in Carbon Dioxide Using Siloxane-Based Stabilizers", Macromolecules, 29, 2704 (1996). https://doi.org/10.1021/ma9516798
  10. C. A. Mantelis, R. Barbey, S. Fortini, and T. Meyer, "Free- Radical Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide: A Parametric Analysis with Reaction Calorimetry", Macromol. React. Eng., 1, 78 (2007). https://doi.org/10.1002/mren.200600011
  11. M. Z. Yates, P. S. Shah, K. P. Johnston, K. T. Lim, and S. Webber, "Steric stabilization of colloids by poly(dimethylsiloxane) in carbon dioxide: Effect of cosolvents", J. of Colloid and Interface Science, 227, 176 (2000). https://doi.org/10.1006/jcis.2000.6850
  12. M. L. O'Neill, M. Z. Yates, K. P. Johnston, C. M. Smith, and S. P. Wilkinson, "Dispersion Polymerization in Supercritical $CO_2$ with a Siloxane-Based Macromonomer: 1. The Particle Growth Regime", Macromolecules, 31, 2838 (1998). https://doi.org/10.1021/ma971314i
  13. M. L. O'Neill, M. Z. Yates, K. P. Johnston, C. M. Smith, and S. P. Wilkinson, "Dispersion Polymerization in Supercritical $CO_2$ with Siloxane-Based Macromonomer. 2. The Particle Formation Regime", Macromolecules, 31, 2848 (1998). https://doi.org/10.1021/ma971315a
  14. M. R. Giles, J. N. Hay, S. M. Howdle, and R. J. Winder, "Macromonomer surfactants for the polymerisation of methyl methacrylate in supercritical $CO_2$", Polymer, 41, 6715 (2000). https://doi.org/10.1016/S0032-3861(00)00009-4
  15. J. Y. Park and J. J. Shim, "Emulsion stability of PMMA particles formed by dispersion polymerization of methyl methacrylate in supercritical carbon dioxide", J. of Supercritical Fluids, 27, 297 (2003). https://doi.org/10.1016/S0896-8446(03)00091-3
  16. S. M. Klein, V. N. Manoharan, D. J. Pine, and F. F. Lange, "Preparation of monodisperse PMMA microspheres in nonpolar solvents by dispersion polymerization with a macromonomeric stabilizer", Colloid Polym. Sci., 282, 7 (2003). https://doi.org/10.1007/s00396-003-0915-0
  17. R. Wang and H. M. Cheung, "A New PDMS Macromonomer Stabilizer for Dispersion Polymerization of Styrene in Supercritical Carbon Dioxide", J. of Applied Polymer Science, 93, 545 (2004). https://doi.org/10.1002/app.20476
  18. S. H. Han, K. K. Park, and S. H. Lee, "GMA-Functionalized Reactive Stabilizer for Polymerization of Methyl Methacrylate in Supercritical $CO_{2}$: Effect of Stabilizer, Initiator and Monomer Concentrations", Macromolecular Research, 16, 120 (2008). https://doi.org/10.1007/BF03218840
  19. S. H. Lee, M. A. LoStracco, B. M. Hasch, and M. A. McHugh, "Solubility of poly(ethylene-co-acrylic acid) in low molecular weight hydrocarbons and dimethyl ether. Effect of copolymer concentration, solvent quality, and copolymer molecular weight", J. Phys. Chem., 98, 4055 (1994). https://doi.org/10.1021/j100066a025
  20. S. H. Lee, "Phase Behavior of Binary and Ternary Mixtures of Poly(ethylene-co-octene)-Hydrocarbons", J. of Applied Polymer Science, 95, 161 (2005). https://doi.org/10.1002/app.20817
  21. F. Rindfleisch, T. P. DiNoia, and M. A. McHugh, "Solubility of Polymers and Copolymers in Supercritical $CO_2$", J. Phys. Chem., 100, 15581 (1996). https://doi.org/10.1021/jp9615823
  22. T. Narasimhaswamy, S. C. Sumathi, and B. S. R. Reddy, "2,4,6-Tribromophenyl acrylate-co-glycidyl methacrylate polymers: Synthesis, characterization, and reactivity ratios", J. Polym. Sci., Part A: Polym. Chem., 30, 2165 (1992). https://doi.org/10.1002/pola.1992.080301010
  23. J. Brandrup, E. H. Immergut, and E. A. Grulke, "Polymer Handbook", 4th ed., p VI199, John Wiley & Sons, Inc., New York, 1999.
  24. C. C. Cypear, P. Camelio, V. Lazzeri, L. J. Mathias, and B. Waegell, "Prediction of the Glass Transition Temperature of Multicyclic and Bulky Substituted Acrylate and Methacrylate Polymers Using the Energy, Volume, Mass (EVM) QSPR Model", Macromolecules, 29, 8954 (1996). https://doi.org/10.1021/ma961170s
  25. A. Higuchi and T. Nakagawa, "Infrared spectroscopic studies of $CO_2$ sorbed in glassy and rubbery polymeric membranes", J. Polym. Sci., Part B: Polym. Phys., 32, 149 (1994). https://doi.org/10.1002/polb.1994.090320118