Inhibitory Effect of Pentose on Biofilm Formation by Oral Bacteria

  • Lee, Young-Jong (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University) ;
  • Baek, Dong-Heon (Department of Oral Microbiology and Immunology, College of Dentistry, Dankook University)
  • Received : 2010.11.22
  • Accepted : 2010.12.16
  • Published : 2010.12.31

Abstract

A number of bacterial species coexist in oral cavities as a biofilm rather than a planktonic arrangement. By forming an oral biofilm with quorum sensing properties, microorganisms can develop a higher pathogenic potential and stronger resistance to the host immune system and antibiotics. Hence, the inhibition of biofilm formation has become a major research issue for the future prevention and treatment of oral diseases. In this study, we investigated the effects of pentose on biofilm formation and phenotypic changes using wild type oral bacteria obtained from healthy human saliva. D-ribose and D-arabinose were found to inhibit biofilm formation, but have no effects on the growth of each oral bacterium tested. Pentoses may thus be good candidate biofilm inhibitors without growth-inhibition activity and be employed for the future prevention or treatment of oral diseases.

Keywords

References

  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43:5721-32. https://doi.org/10.1128/JCM.43.11.5721-5732.2005
  2. Aspiras MB, Ellen RP, Cvitkovitch DG. ComX activity of Streptococcus mutans growing in biofilms. FEMS Microbiol Lett. 2004;238:167-74.
  3. Azakami H, Teramura I, Matsunaga T, Akimichi H, Noiri Y, Ebisu S, Kato A. Characterization of autoinducer 2 signal in Eikenella corrodens and its role in biofilm formation. J Biosci Bioeng. 2006;102:110-7. https://doi.org/10.1263/jbb.102.110
  4. Baehni PC, Takeuchi Y. Anti-plaque agents in the prevention of biofilm-associated oral diseases. Oral Dis. 2003;9:23-9. https://doi.org/10.1034/j.1601-0825.9.s1.5.x
  5. Bassler BL, Wright M, Silverman MR. Sequence and function of LuxO, a negative regulator of luminescence in Vibrio harveyi. Mol Microbiol. 1994;12:403-12. https://doi.org/10.1111/j.1365-2958.1994.tb01029.x
  6. Becker MR, Paster BJ, Leys EJ, Moeschberger ML, Kenyon SG, Galvin JL, Boches SK, Dewhirst FE, Griffen AL. Molecular analysis of bacterial species associated with childhood caries. J Clin Microbiol. 2002;40:1001-9. https://doi.org/10.1128/JCM.40.3.1001-1009.2002
  7. Brito LC, Teles FR, Teles RP, Franca EC, Ribeiro-Sobrinho AP, Haffajee AD, Socransky SS. Use of multiple-displacement amplification and checkerboard DNA-DNA hybridization to examine the microbiota of endodontic infections. J Clin Microbiol. 2007;45:3039-49. https://doi.org/10.1128/JCM.02618-06
  8. Burgess NA, Kirke DF, Williams P, Winzer K, Hardie KR, Meyers NL, Aduse-Opoku J, Curtis MA, Camara M. LuxSdependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology. 2002;148:763-72. https://doi.org/10.1099/00221287-148-3-763
  9. Chung WO, Park Y, Lamont RJ, McNab R, Barbieri B, Demuth DR. Signaling system in Porphyromonas gingivalis based on a LuxS protein. J Bacteriol. 2001;183:3903-9. https://doi.org/10.1128/JB.183.13.3903-3909.2001
  10. Costerton JW. Introduction to biofilm. Int J Antimicrob Agents. 1999;11:217-21. https://doi.org/10.1016/S0924-8579(99)00018-7
  11. Hojo K, Nagaoka S, Murata S, Taketomo N, Ohshima T, Maeda N. Reduction of vitamin K concentration by salivary Bifidobacterium strains and their possible nutritional competition with Porphyromonas gingivalis. J Appl Microbiol. 2007;103:1969-74. https://doi.org/10.1111/j.1365-2672.2007.03436.x
  12. James CE, Hasegawa Y, Park Y, Yeung V, Tribble GD, Kuboniwa M, Demuth DR, Lamont RJ. LuxS involvement in the regulation of genes coding for hemin and iron acquisition systems in Porphyromonas gingivalis. Infect Immun. 2006;74:3834-44. https://doi.org/10.1128/IAI.01768-05
  13. Kim C, Kim J, Park HY, Lee JH, Park HJ, Kim CK, Yoon J. Structural understanding of quorum-sensing inhibitors by molecular modeling study in Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2009;83:1095-103. https://doi.org/10.1007/s00253-009-1954-3
  14. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr. Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66:486-505. https://doi.org/10.1128/MMBR.66.3.486-505.2002
  15. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol. 2005;43:3944-55. https://doi.org/10.1128/JCM.43.8.3944-3955.2005
  16. Li YH, Hanna MN, Svensater G, Ellen RP, Cvitkovitch DG. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J Bacteriol. 2001;183:6875-84. https://doi.org/10.1128/JB.183.23.6875-6884.2001
  17. Loo CY, Corliss DA, Ganeshkumar N. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J Bacteriol. 2000;182:1374-82. https://doi.org/10.1128/JB.182.5.1374-1382.2000
  18. Marcotte H, Lavoie MC. Oral microbial ecology and the role of salivary immunoglobulin A. Microbiol Mol Biol Rev. 1998;62:71-109.
  19. McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, Lamont RJ. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J Bacteriol. 2003;185:274-84. https://doi.org/10.1128/JB.185.1.274-284.2003
  20. Paster BJ, Olsen I, Aas JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000. 2006;42:80-7. https://doi.org/10.1111/j.1600-0757.2006.00174.x
  21. Petersen FC, Pecharki D, Scheie AA. Biofilm mode of growth of Streptococcus intermedius favored by a competencestimulating signaling peptide. J Bacteriol. 2004;186:6327-31. https://doi.org/10.1128/JB.186.18.6327-6331.2004
  22. Rickard AH, Palmer RJ Jr, Blehert DS, Campagna SR, Semmelhack MF, Egland PG, Bassler BL, Kolenbrander PE. Autoinducer 2 : a concentration-dependent signal for mutualistic bacterial biofilm growth. Mol Microbiol. 2006;60:1446-56. https://doi.org/10.1111/j.1365-2958.2006.05202.x
  23. Shao H, Lamont RJ, Demuth DR. Autoinducer 2 is required for biofilm growth of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Infect Immun. 2007;75:4211-8. https://doi.org/10.1128/IAI.00402-07
  24. Scheie AA, Petersen FC. The Biofilm Concept: Consequences for Future Prophylaxis of Oral Diseases? Crit Rev Oral Biol Med. 2004;15:4-12. https://doi.org/10.1177/154411130401500102
  25. Socransky SS, Haffajee AD. Dental biofilms: difficult therapeutic targets. Periodontol 2000, 2002;28:12-55. https://doi.org/10.1034/j.1600-0757.2002.280102.x
  26. van der Ploeg JR. Regulation of bacteriocin production in Streptococcus mutans by the quorum-sensing system required for development of genetic competence. J Bacteriol. 2005; 187:3980-9. https://doi.org/10.1128/JB.187.12.3980-3989.2005
  27. Yoshida A, Ansai T, Takehara T, Kuramitsu HK. LuxS-based signaling affects Streptococcus mutans biofilm formation. Appl Environ Microbiol 2005;71:2372-80. https://doi.org/10.1128/AEM.71.5.2372-2380.2005