Volatile Compounds and Sensory Properties of Commercial Brown Rice Vinegars Fermented with and without Ethanol

시판 현미식초의 주정첨가 유무에 따른 휘발성 성분 및 관능적 특성 비교

  • Yoon, Sung-Ran (Department of Food Science and Technology, Kyungpook National University) ;
  • Kim, Gui-Ran (Department of Food Science and Technology, Kyungpook National University) ;
  • Lee, Ji-Hyun (Department of Food Science and Technology, Kyungpook National University) ;
  • Lee, Su-Won (Department of Food Science and Technology, Kyungpook National University) ;
  • Jeong, Yong-Jin (Department of Food Science and Technology, Keimyung University) ;
  • Yeo, Soo-Hwan (Fermentation and Food Processing Division, Deparment of Agrofood Resources, NAAS, RDA) ;
  • Choi, Han-Seok (Fermentation and Food Processing Division, Deparment of Agrofood Resources, NAAS, RDA) ;
  • Kwon, Joong-Ho (Department of Food Science and Technology, Kyungpook National University)
  • Received : 2010.04.21
  • Accepted : 2010.06.01
  • Published : 2010.10.31

Abstract

The properties of volatile flavor components were compared in commercial brown rice vinegars that were fermented with and without ethanol addition, for which solid phase microextraction-gas chromatography (SPME-GC), electronic nose, and sensory evaluations were performed. A total of 24 volatile compounds, mainly composed of acetic acid, ethyl acetate, benzaldehyde, iso-valeric acid, phenylethyl alcohol, 2-phenylethyl acetate, acetoin, and isobutyric acid, were identified in the brown rice vinegar fermented without ethanol, while major volatiles in the brown rice vinegar fermented with ethanol were acetic acid, ethyl acetate, 1-hexyl acetate, benzaldehyde, 2-phenylethyl acetate, and phenylethyl alcohol. The electronic nose patterns of samples indicated a significant difference in the brown rice vinegars fermented with and without ethanol. Pungent flavor and off-flavor intensity were high in the brown rice vinegar fermented without ethanol. According to the results, fermentation conditions affect the volatile properties of brown rice vinegars.

시판 현미식초를 주정첨가 유무 발효방식에 따른 휘발성 성분 특성을 살펴보고자 SPME-GC 분석, 전자코 패턴 및 관능평가를 실시하였다. 그 결과, GC-MS 분석을 통한 현미식초의 향기성분분석에서 주정 무첨가 발효된 현미식초의 주된 휘발성 성분은 acetic acid, ethyl acetate, benzaldehyde, iso-valeric acid, phenylethyl alcohol, 2-phenylethyl acetate, acetoin, isobutyric acid 등으로 총 24종의 휘발성 성분이 확인되었다. 주정첨가 발효 현미식초의 주된 휘발성 성분은 acetic acid, ethyl acetate, 1-hexyl acetate, benzaldehyde, 2-phenylethyl acetate, phenylethyl alcohol 등으로 나타났으며, 총 16종의 휘발성 성분이 확인되었다. 전자코분석시 주정 무첨가 현미식초는 알코올 발효에 의한 다양한 향의 생성으로 초산 발효시에도 각각 다른 향미패턴이 나타남을 볼 수 있었으며, 주정첨가 현미식초는 주정에 의한 초산발효로 거의 유사한 향미패턴으로 나타나 주정첨가 유무에 따라 현미식초의향 패턴이 다소 상이함을 확인하였다. 자극취, 이취의 강도에 대한 관능평가에서는 주정 무첨가 발효된 현미식초가 다소 높게 나타났다. 따라서 주정첨가 유무의 발효방식은 현미식초의 향미에 영향을 미치는 것으로 확인되었다.

Keywords

References

  1. Jeong YJ, Seo JH, Jung SH, Shin SR, Kim KS. The quality comparison of uncleaned rice vinegar by two stages fermentation with commercial uncleaned rice venegar. Korean J. Food Preserv. 5: 374-379 (1998)
  2. Yukimichi K, Yasuhiro U, Fujiharu Y. The general composition inorganic cations free amino acids and organic acid of special vinegars. Nippon Shokuhin Kogyo Gakk. 34: 592-596 (1987) https://doi.org/10.3136/nskkk1962.34.9_592
  3. Jeong YJ, Lee MH. A view and prospect of vinegar using kyungpook special products (persimmon, apple, and grape). Food Ind. Nutr. 5: 53-39 (2000)
  4. Joo KH, Cho MH, Moon SY, Song SH. Volatile compounds and sensory odor properties of commercial vinegars. Korean J. Food Sci. Technol. 30: 299-305 (1998)
  5. Kim GR, Yoon SR, Lee JH, Yeo SH, Kim TY, Jeong YJ, Yoon KY, Kwon JH. Quality comparison of commercial brown rice vinegar fermented with and without ethanol. Korean J. Food Preserv. 16: 893-899 (2009)
  6. Hodgkin D, Simmonds D. Sensory technology for flavor analysis. Cereal Foods World 40: 186-191 (1995)
  7. Chou UD. Use and development of sensation sensor. Bull. Food Technol. 8: 122-131 (1995)
  8. Noh BS. Analysis of volatile compounds using electronic nose and its application in food industry. Korean J. Food Sci. Technol. 37: 1048-1064 (2005)
  9. Lim CL, Noh BS. Application of electronic nose in biotechnology. Korean J. Biotechnol. Bioeng. 22: 401-408 (2007)
  10. Kahn JH, Nickol GB, Conner HA. Identification of volatile components in vinegars by gas chromatography-mass spectrometry. J. Agr. Food Chem. 20: 214-218 (1972) https://doi.org/10.1021/jf60180a038
  11. Blanch GP, Tabera J, Sanz J, Herrais M, Reglero G. Volatile composition of vinegars. Simultaneous distillation-extraction and gas chromatographic-mass spectrometric analysis. J. Agr. Food Chem. 40: 1046-1049 (1992) https://doi.org/10.1021/jf00018a027
  12. Yoon HN, Moon SY, Song SH. Volatile compounds and sensory odor properties of commercial vinegars. Korean J. Food Sci. Technol. 30: 299-305 (1998)
  13. Hur SH, Lee WK. Volatile flavor components in pumpkin vinegar. J. Food Sci. Nutr. 3: 119-122 (1998)
  14. Seo JH, Park NY, Jeong YJ. Volatile components in persimmon vinegars by solid-phase microextraction. Korean J. Food Sci. Technol. 33: 153-156 (2001)
  15. 15. Lee BY. Application of electronic nose for aroma analysis of persimmon vinegar concentrates. Korean J. Food Sci. Technol. 31: 314-321 (1999)
  16. Zhang Q, Zhang S, Xie C, Zeng D, Fan C, Li D, Bai Z. Chracterization of Chinese vinegars by electronic nose. Sensor Actuat. B-Chem. 119: 538-546 (2006) https://doi.org/10.1016/j.snb.2006.01.007
  17. Anklam E, Lipp M, Radovic B, Chiavaro E, Palla G. Characterisation of Italian vinegar by pyrolysis-mass spectrometry and a sensor device (electronic nose). Food Chem. 61: 243-248 (1998) https://doi.org/10.1016/S0308-8146(97)00104-0
  18. SAS Institute Inc. SAS user's guide: Statistics. Cary, NC, USA pp. 119-138 (1982)
  19. Clark TJ, Bunch JE. Qualitative and quantitative analysis of flavor additives on tobacco products using SPME-GC-mass spectroscopy. J. Agr. Food Chem. 45: 844-849 (1997) https://doi.org/10.1021/jf960522r
  20. Editorial Committee of Encyclopedia Chimica. Encyclopedia Chimica, Kyolis Publishing & Printing Co., Ltd., Tokyo, Japan Vol. 11, p. 110, 811, 847, Vol. 2, p. 481 (1964)
  21. Merck Index. An Encyclopedia of Chemicals, Drugs, and Biologicals, 12th ed. Merck Co. Inc., Whitehouse Station, NJ, USA p. 1130, 1270, 552, 1129, 737, 88, 97, 149, 326, 8, 243, 220, 752 (1992)
  22. Nishiya T. Composition of soju. J. Jpn. Soc. Brew. 72: 415-432 (1977) https://doi.org/10.6013/jbrewsocjapan1915.72.415
  23. Yuda J. Volatile compounds from beer fermentation. J. Jpn. Soc. Brew. 71: 818-830 (1976)
  24. Burdock GA. Fenaroli's Handbook of Flavor Ingredients (6th ed.). CRC Press Inc., Boca Raton, FL, USA. p. 1632 (2010)
  25. Kobayachi M, Shimizu H, Shioya S. Beer volatile compounds and their application to low-malt beet fermentation. J. Biosci. Bioeng. 106: 317-323 (2008) https://doi.org/10.1263/jbb.106.317
  26. Jones DD, Greenshields RN. Volatile constituents of vinegar. I. A survey of some commercially availlable malt vinegars. J. Inst. Brew. 75: 457-463 (1969) https://doi.org/10.1002/j.2050-0416.1969.tb06382.x
  27. Jones DD, Greenshields RN. Volatile constituents of vinegar. II. Formation of volatiles in a commercial malt vinegar process. J. Inst. Brew. 76: 55-60 (1970) https://doi.org/10.1002/j.2050-0416.1970.tb03261.x
  28. Hong HK. Gas identification using micro-gas sensor array and neutral-network pattern recognition. Sensor Actuat. B-Chem. 33: 68-71 (1996) https://doi.org/10.1016/0925-4005(96)01892-8
  29. Noh BS, Oh SY. Application of electronic nose based GC-SAW. Food Sci. Ind. 35: 50-56 (2002)
  30. Guadarrama A, Rodriguez-Mendez ML, Sanz C, Rios JL, de Saja JA. Electronic nose based on conducting polymers for the quality control of the olive oil aroma: Discrimination of qulity, variety of olive, and geographic origin. Anal. Chem. Acta 432: 283-293 (2001) https://doi.org/10.1016/S0003-2670(00)01383-0
  31. Seo HS, Kang HJ, Jung EH, Hwang IK. Application of GC-SAW (surface acoustic wave) electronic nose to classification of origins and blended commercial brands in roasted ground coffee beans. Korean J. Food Cookery Sci. 22: 299-306 (2006)