Rice Protein Composite Films from Lodged Rice

도복미를 이용한 쌀 단백질 복합 필름의 제조

  • Han, Youn-Jeong (Department of Food Science and Nutrition, The Catholic University of Korea) ;
  • Lee, Won-Jong (Department of Food and Nutrition, Gangneung-Wonju National University) ;
  • Shin, Jin-Chul (National Institute of Crop Science, RDA) ;
  • Kim, Young-Joon (Division of Bioscience and Technology, Yonsei University) ;
  • Kim, Suk-Shin (Department of Food Science and Nutrition, The Catholic University of Korea)
  • 한윤정 (가톨릭대학교 식품영양학과) ;
  • 이원종 (강릉원주대학교 식품영양학과) ;
  • 신진철 (농촌진흥청 국립식량과학원) ;
  • 김영준 (연세대학교 생명과학기술학부) ;
  • 김석신 (가톨릭대학교 식품영양학과)
  • Received : 2010.04.28
  • Accepted : 2010.07.02
  • Published : 2010.10.31

Abstract

This study was performed to extract rice protein from milled rice that is either lodged or unlodged, in order to prepare composite films by mixing the protein with curdlan or ${\kappa}$-carrageenan (3:0, 2:1, 1.5:1.5, 1:2, 0:3), and to compare the physical properties of the films. In the case of rice protein/curdlan composite films, tensile strengths increased with increasing curdlan content but water vapor permeabilities decreased, while, elongations showed a maximum at a mixing ratio of 1.5:1.5. In the case of rice protein/${\kappa}$-carrageenan composite films, tensile strengths increased with increasing ${\kappa}$-carrageenan content but elongations decreased, while water vapor permeabilities showed no tendency. Overall, there were no significant differences in the physical properties of composite films between lodged rice and unlodged rice.

도복 백미와 무도복 백미로부터 쌀 단백질을 추출하고 쌀 단백질과 curdlan 또는 ${\kappa}$-carrageenan을 일정 비율(3:0, 2:1, 1.5:1.5, 1:2, 0:3)로 혼합하여 복합 필름을 제조한 후 물리적 성질을 비교하였다. 쌀 단백질/curdlan 복합 필름의 경우 인장강도는 curdlan의 혼합비율이 증가할수록 증가하였고, 신장율은 혼합비율이 1.5:1.5일 때 가장 큰 것으로 나타났으며, 수증기투과도는 curdlan의 혼합비율이 증가할수록 감소하는 경향을 보였지만 감소폭은 크지 않았다. 도복미와 무도복미 사이에 물리적 성질의 유의차는 없었다. 쌀 단백질/${\kappa}$-carrageenan 복합 필름의 경우 인장강도는 ${\kappa}$-carrageenan의 혼합비율이 증가할수록 증가하였고, 신장율은 감소하였다. 수증기투과도는 일정한 경향을 보이지 않았다. 또한 도복미와 무도복미로 제조한 쌀 단백질 복합 필름의 물리적 성질사이에 유의차는 없었다.

Keywords

References

  1. Kang YS. Wind and flooding damages of rice plants in Korea. Korean J. Crop Sci. (Special ed.: Quality Res.): 45-65 (1989)
  2. Yamamoto H, Iwaya K. Influence of typhoon on the paddy rice production in Kyushu and Yamaguchi districts in 2004 and salty wind damage of rice caused by typhoon 0418 (Songda). Japan J. Crop Sci. 75: 535-541 (2006) https://doi.org/10.1626/jcs.75.535
  3. Chen WP, Chang YC. Production of high-fructose rice syrup and high-protein rice flour from broken rice. J. Sci. Food Agr. 35: 1128-1135 (1984) https://doi.org/10.1002/jsfa.2740351012
  4. Dias AB, Muller CMO, Larotonda FDS, Laurindo JB. Biodegradable films based on rice starch and rice flour. J. Cereal Sci. in press (2010)
  5. Hanmoungjai P, Pyle DL, Niranjan K. Enzyme-assisted waterextraction of oil and protein from rice bran. J. Chem. Technol. Biot. 77: 771-776 (2002) https://doi.org/10.1002/jctb.635
  6. Bae D, Jang IS. Development of new food protein through chemical modification of rice bran proteins. Agric. Chem. Biotechnol. 42: 180-185 (1999)
  7. Kim YS, Ha TY, Lee SH, Lee HY. Properties of dietary fiber extract from rice bran and application in bread-making. Korean J. Food Sci. Technol. 29: 502-508 (1997)
  8. Adebiyi AP, Adebiyi AO, Jin DH, Ogawa T, Muramoto K. Rice bran protein-based edible films. Int. J. Food Sci. Tech. 43: 476-483 (2008) https://doi.org/10.1111/j.1365-2621.2006.01475.x
  9. Gnanasambandam R, Hettiarachchy NS, Coleman M. Mechanical and barrier properties of rice bran films. J. Food Sci. 62: 395-398 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb04009.x
  10. Shih FF. Edible films from rice protein concentrate and pullulan. Cereal Chem. 73: 406-409 (1996)
  11. Kim KM, Jang IS, Ha SD, Bae DH. Improved storage stability of brown rice by coating with rice bran protein. Korean J. Food Sci. Technol. 36: 490-500 (2004)
  12. Han YJ, Roh HJ, Kim SS. Preparation and physical properties of curdlan composite edible films. Korean J. Food Sci. Technol. 39: 158-163 (2007)
  13. Han YJ, Kim SS. Physical properties of mixed $\kappa$/$\lambda$- and $\kappa$/$\iota$-carrageenan films. Korean J. Food Sci. Technol. 40: 42-46 (2008)
  14. Morita T, Kiriyama S. Mass production method for rice protein isolate and nutritional evaluation. J. Food Sci. 58: 1393-1396 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb06190.x
  15. Kim M, Jeong Y. Extraction and electrophoretic characterization of rice proteins. Nutraceuticals Food 7: 437-441 (2002) https://doi.org/10.3746/jfn.2002.7.4.437
  16. Paraman I, Hettiarachchy NS, Schaefer C. Preparation of rice endosperm protein isolate by alkali extraction. Cereal Chem. 85: 76-81 (2008) https://doi.org/10.1094/CCHEM-85-1-0076
  17. ASTM. Annual Book of ASTM Standards, Destination D882-01, American Society for Testing and Materials, Philadelphia, PA, USA (1989)
  18. ASTM. Annual Book of ASTM Standards, Destination E96-80, American Society for Testing and Materials, Philadelphia, PA, USA (1989)
  19. Gennadios A, Weller CL, Testin RF. Modification of physical and barrier properties of edible wheat gluten-based films. Cereal Chem. 70: 426-429 (1993)
  20. Salame M. Barrier polymers. pp. 48-54. In: The Wiley Encyclopedia of Packaging Technology, Bakker M (ed). John Wiley and Sons, New York, NY, USA (1986)
  21. Turhan KN, Sahbaz F. Water vapor permeability, tensile properties, and solubility of methylcellulose-based edible films. J. Food Eng. 61: 459-466 (2004) https://doi.org/10.1016/S0260-8774(03)00155-9
  22. Maynes JR, Krochta JM. Properties of edible films from total milk protein. J. Food Sci. 59: 909-911 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb08155.x