황기홍국소스를 처리한 계육이 고지방 및 고콜레스테롤 식이 흰쥐의 ROS 생성 및 소거계 관련 효소의 활성에 미치는 영향

Effects of Chicken Treated with Hwangki-Beni Koji Sauces on ROS Generating and Scavenging Related Enzyme Activities in Rats Fed with a High Fat and High Cholesterol Diet

  • 김재원 (대구가톨릭대학교 외식식품산업학부 식품가공학) ;
  • 김순동 (대구가톨릭대학교 외식식품산업학부 식품가공학) ;
  • 윤광섭 (대구가톨릭대학교 외식식품산업학부 식품가공학)
  • Kim, Jae-Won (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Kim, Soon-Dong (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Youn, Kwang-Sup (Department of Food Science and Technology, Catholic University of Daegu)
  • 투고 : 2010.05.25
  • 심사 : 2010.07.11
  • 발행 : 2010.10.31

초록

황기열수추출물(WEH)과 홍국 70% 에탄올추출물(EEB) 및 Monascus pilosus 액침배양액(LBK)을 동결건조한 등량 혼합물을 일반 닭고기 베이스소스에 0.225% 첨가한 황기홍국소스(HBS)를 처리한 계육의 식이가 고지방-고콜레스테롤 병행식이 흰쥐의 ROS 생성 및 소거계 효소류의 활성에 미치는 영향을 조사하였다. 실험군은 정상군(NC), 고지방-고콜레스테롤 대조군(HFC), 고지방-고콜레스테롤 식이에 베이스소스를 처리한 계육을 15% 첨가한 식이군(HFC-BS) 및 고지방-고콜레스테롤 식이에 황기홍국소스를 처리한 계육을 15% 첨가한 식이군(HFC-HBS)으로 구분하여(5마리/군) 5주간 사육하였다. 체내 활성산소를 생성하는 xanthin oxidoreductase O type 활성은 HFC군에 비하여는 31.84%가 HFCBS군에 비하여는 24.57%가 각각 감소되었다. Superoxide dismutase 및 glutathione S-transferase 활성은 HFC-HBS군이 HFC군 및 HFC-BS군에 비하여 각각 25.17-64.50% 및 19.29-62.89%가 증가 하였다. 활성산소에 소거에 관여하는 glutathione의 함량은 HFCHBS군이 HFC군 및 HFC-BS군에 비하여 각각 53.30% 및 25.11%가 증가하였으며, 간조직의 지질과산화물의 함량은 각각 20.29% 및 24.19%가 감소되었다. Glutathione peroxidase 및 catalase 활성은 각각 41.29-41.87% 및 22.91-23.44%가 증가하였다. 이상의 결과 황기홍국소스를 처리한 계육은 고지방-고콜레스테롤 병행식이 하에서도 활성산소 생성계 효소 활성을 감소함과 동시에 소거계 활성을 높힘으로서 간조직 손상을 예방 및 치유하는 것으로 사료된다.

The dietary effects of chicken treated with Hwangki-Beni Koji sauce (HBS) on reactive oxygen species (ROS) generating and scavenging related enzyme activities in rats fed with a high-fat and high-cholesterol diet were investigated. The rats (five rats per group) were divided into a normal control diet group (NC), a high-fat and high-cholesterol diet control group (HFC), HFC plus base sauce-treated chicken supplemented diet group (HFC-BS), and a HFC plus HBStreated chicken supplemented diet group (HFC-HBS), and fed for 5 weeks. Total type T (T) and type O (O) hepatic xanthine oxidoreductase in HFC-HBS were 27.91-35.78% and 24.57-31.84% lower than those of HFC and HFC-BS, respectively. In HFC-HBS compared with HFC and HFC-BS, superoxidase dismutase activity was 62.89-64.50% higher, glutathione S-transferase activity was 19.29-25.17% higher, glutathione content was 25.11-53.30% higher, and lipid peroxide content was 20.29-24.19% lower. Therefore, chicken treated with HBS may prevent liver damage by the ROS formed from a high-fat and high -cholesterol diet.

키워드

참고문헌

  1. Carr MC. The emergence of the metabolic syndrome with menopause. J. Clin. Endoc. Metab. 88: 2404-2411 (2003) https://doi.org/10.1210/jc.2003-030242
  2. Kopelman PG. Causes and consequences of obesity. Med. Int. 22: 385-388 (1994)
  3. Kyeung SE, Jung SY. The analysis of type D personality research as a psychosocial risk factor in cardiovascular disease for elders with a chronic disease. J. Korean Acad. Nurs. 38: 19-28 (2008) https://doi.org/10.4040/jkan.2008.38.1.19
  4. Halliwell B. Reactive oxygen species and the central nervous system. J. Neurochem. 59: 1609-1623 (2006)
  5. Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease. Am. J. Med. 91: 14-22 (1991)
  6. 6. Jeon SM, Bok SH, Jang MK, Lee MK, Nam KT, Park YB, Rhee SJ, Choi MS. Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci. 69: 2855-2866 (2001) https://doi.org/10.1016/S0024-3205(01)01363-7
  7. Moon SH, Lee MK, Chae KS. Inhibitory effects of the solvent fractions from persimmon leaves on xanthine oxidase activity. Korean J. Food Nutr. 14: 120-125 (2001)
  8. De Haan JB, Cristiano F, Iannello RC, Kola I. Cu/Zn-superoxide dismutase and glutathione peroxidase during aging. Biochem. Mol. Biol. Int. 35: 1281-1297 (1995)
  9. Nieves J. Osteoporosis: the role of micronutrients. Am. J. Clin. Nutr. 81: 1232-1239 (2005)
  10. Paigen B. Genetics of responsiveness to high-fat and high-cholesterol diets in the mouse. Am. J. Clin. Nutr. 62: 458-462 (1995)
  11. National Rural Resources Development Institute, RDA. 7th Revision Food Composition Table II. Hyoil Press, Seoul, Korea. pp. 316-328 (2006)
  12. Viveros A, Centeno C, Arija I, Brenes A. Cholesterol-lowering effects of dietary lupin (Lupinus albus var Multolupa) in chicken diets. Poult. Sci. 86: 2631-2638 (2007) https://doi.org/10.3382/ps.2007-00128
  13. Min SH. Quality characteristics of sikhe prepared with Astragalus membranaceus water extracts. J. East Asian Soc. Dietary Life 19: 216-223 (2009)
  14. Baek NI, Kim YS, Kyung JS, Park KH. Isolation of anti-hepatotoxic from the root of Astragalus membranceus. Korean J. Pharmacogn. 27: 111-116 (1996)
  15. Jung HS, Lee EJ, Lee JH, Kim JS, Kang SS. Phytochemical studies on Astragalus root(3): Triterpenoids and sterols. Korean J. Pharmacogn. 39: 186-193 (2008)
  16. Rios JL, Waterman PG. A review of the pharmacology and toxicology of Astragalus. Phytother. Res. 11: 411-418 (1997) https://doi.org/10.1002/(SICI)1099-1573(199709)11:6<411::AID-PTR132>3.0.CO;2-6
  17. Ryu MS, Kim EH, Chun MS, Kang SH, Shim BS, Yu YB, Jeong GJ, Lee JS. Astragali Radix elicits anti-inflammation via activation of MKP-1, concomitant with attenuation of p38 and Erk. J. Ethnopharmacol. 115: 184-193 (2008) https://doi.org/10.1016/j.jep.2007.09.027
  18. Martinkova L, Juzlova P, Vesely D. Biological activity of polyketide pigments produced by the fungus Monascus. J. Appl. Bacteriol. 79: 609-616 (1995) https://doi.org/10.1111/j.1365-2672.1995.tb00944.x
  19. Kim EY, Rhyu MR. Antimicrobial activities of Monascus koji extracts. Korean J. Food Sci. Technol. 40: 76-81 (2008)
  20. Inoue K, Shirai T, Ochiai H, Kasao M, Hayakawa K, Kimura M. Blood-pressure-lowering effect of a novel fermented milk containing $\gamma$-aminobutyric acid in mild hypertensives. Eur. J. Clin. Nutr. 57: 490-495 (2003) https://doi.org/10.1038/sj.ejcn.1601555
  21. Kang MR, Kim JY, Hyun YJ, Kim HJ, Yeo HY, Song YD, Lee JH. The effect of red-yeast-rice supplement on serum lipid profile and glucose control in subjects with impaired fasting glucose or impaired glucose tolerance. Korean J. Nutr. 41: 31-40 (2008)
  22. Yasukawa K, Takahashi M, Yamanouchi S, Takido M. Inhibitory effect of oral administration of Monascus pigment on tumor promotion in two-stage carcinogenesis in mouse skin. Oncology 53: 247-249 (1996) https://doi.org/10.1159/000227568
  23. Youn UK, Kim YH, Kim SD. Pigment and monacolin K content of beni-koji fermented with soybean curd residue. Korean J. Food Preserv. 10: 360-364 (2003)
  24. Kroeger M. How omics technologies can contribute to the '3R' principles by introducing new strategies in animal testing. Trends Biotechnol. 24: 343-346 (2006) https://doi.org/10.1016/j.tibtech.2006.06.003
  25. Stirpe F, Della Corte E. The regulation of rat liver xanthine oxidase. J. Biol. Chem. 244: 3855-3860 (1969)
  26. Martin JP, Dailey JM, Sugarmanand E. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Arch. Biochem. Biophys. 255: 329-336 (1987) https://doi.org/10.1016/0003-9861(87)90400-0
  27. Habig WH, Pabst MJ, Fleischner G, Gatmaitan F, Aris IM, Jacoby WB. The identifica-tion of glutathione S-transferase B with ligandin, a major binding protein of liver. P. Natl. Acad. Sci. USA 71: 3879-3882 (1974) https://doi.org/10.1073/pnas.71.10.3879
  28. Ellman GL. Tissue sulfhydryl group. Arch. Biochem. Biophys. 82: 70-77 (1959) https://doi.org/10.1016/0003-9861(59)90090-6
  29. Satho K. Serum lipid peroxide in cerevrovascular disorders determined by a new colorimetric method. Clin. Chim. Acta 90: 37-43 (1978) https://doi.org/10.1016/0009-8981(78)90081-5
  30. Pagila ED, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70: 158-169 (1967)
  31. Claibome A. Catalase activity. pp. 283-284. In: CRC Handbook of Methods for Oxygen Radical Research. Greenwald RA (ed.). CRC Press, Boca raton, FL, USA (1986)
  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RL. Protein measurement by folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
  33. Park GY, Lee SJ, Lim JG. Effects of green tea catechin on cytochrome p450, xanthine oxidase activities in liver and liver damage in streptozveocin induced diabetic rats. J. Korean Soc. Food Sci. Nutr. 26: 901-907 (1997)
  34. Oei HH, Kentroo WE, Burton KP, Schaffer SW. A possible role of xanthine oxidase in producing oxidative stress in the heart of chronically ethanol treated rats. Res. Commun. Chem. Path. 38: 453-461 (1982)
  35. Ham YK, Kim SW. Protective effects of plant extract on the hepatocytes of rat treated with carbon tetrachloride. J. Korean Soc. Food Sci. Nutr. 33: 1246-1251 (2004) https://doi.org/10.3746/jkfn.2004.33.8.1246
  36. Urano S, Midori H, Tochihi N, Matsuo M, Shiraki M, Ito H. Vitamin E and the susceptibility of erythrocytes and reconstituted liposome to oxidative stress in aged diabetics. Lipids 26: 58-62 (1991) https://doi.org/10.1007/BF02544025
  37. Hashim MS, Lincy S, Remya V, Teena M, Anila L. Effect of polyphenolic compounds from Coriandrum sativum on H2O2- induced oxidative stress in human lymphocytes. Food Chem. 92: 653-660 (2005) https://doi.org/10.1016/j.foodchem.2004.08.027
  38. Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Res. 31: 273-300 (1999) https://doi.org/10.1080/10715769900300851
  39. Flohe L, Gunzler WA, Schock HH. Glutathione peroxidase: A selenoenzyme. FEBS Lett. 32: 132-134 (1973) https://doi.org/10.1016/0014-5793(73)80755-0
  40. Im MJ, Manson PN, Bulkley GB, Hoopes JE. Effects of superoxide dismutase and allopurinol in survival of acute island skin flaps. Ann. Surg. 201: 357-359 (1985) https://doi.org/10.1097/00000658-198503000-00018
  41. Jacoby JB. The glutathione S-transferase: A group of multifunctional detoxification proteins. Adv. Enzymol. RAMB 46: 383-414 (1978)
  42. Adams JD, Lauerberg BH, Mitchell JR. Plasma glutathione and glutathione disulfide in rat: Regulation and response to oxidative stress. J. Pharmacol. Exp. Ther. 227: 749-754 (1983)
  43. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 248-254 (1979)
  44. Kang MH, Lee JH, Lee JS, Kim JH, Chung HK. Effect of acorn supplementation on lipid profiles and antioxidant enzyme activities in high fat diet-induced obese rats. Korean J. Nutr. 37: 169-175 (2004)
  45. Vladislav E, Dana K, Monika B. The effect of curcumin on cadmium- induced oxidative damage and trace elements level in the liver of rats and mice. Toxicol. Lett. 151: 79-85 (2004) https://doi.org/10.1016/j.toxlet.2004.02.019
  46. Wang RS, Nakajima T, Honma T. Different change patterns of the isozymes of cytochrome P450 and glutathione S-transferases in chemically induced liver damage in rat. Ind. Health 37: 440-448 (2000)
  47. Bok SH, Park SY, Park YB, Lee MK, Jeon SM, Jeong TS, Choi MS. Quercetin dihydrate and gallate supplements lower plasma and hepatic lipids and change activities of hepatic antioxidant enzymes in high cholesterol-fed rats. Int. J. Vitam. Nutr. Res. 72: 161-169 (2002) https://doi.org/10.1024/0300-9831.72.3.161
  48. Lee J, Jeong JY, Cho YS, Park SK, Kim KJ, Kim MJ, Lee MK. Effect of young Phragmites communis leaves powder on lipid metabolism and erythrocyte antioxidant enzyme activities in highfat diet fed mice. J. Korean Soc. Food Sci. Nutr. 39: 677-683 (2010) https://doi.org/10.3746/jkfn.2010.39.5.677
  49. Song WY, Sung BH, Kang SK, Choi JH. Effect of water extracts from Phellinus linteus on lipid composition and antioxidative system in rats fed high fat high cholesterol diet. J. Korean Soc. Food Sci. Nutr. 39: 71-77 (2010) https://doi.org/10.3746/jkfn.2010.39.1.071
  50. Bompart GJ, Prevot DS, Bascands JL. Rapid automated analysis of glutathion reductase, peroxidase, and S-transferase activity: Application to cisplatin-induced toxicity. Clin. Biochem. 23: 501-504 (1990) https://doi.org/10.1016/0009-9120(90)80039-L