DOI QR코드

DOI QR Code

Genomewide Profiling of Rapamycin Sensitivity in Saccharomyces cerevisiae on Synthetic Medium

  • Chang, Yeon-Ji (School of Biological Sciences, and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University) ;
  • Shin, Chun-Shik (School of Biological Sciences, and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University) ;
  • Han, Dong-Hun (Korea Science Academy) ;
  • Kim, Ji-Yun (Korea Science Academy) ;
  • Kim, Kang-In (Korea Science Academy) ;
  • Kwon, Yong-Min (Korea Science Academy) ;
  • Huh, Won-Ki (School of Biological Sciences, and Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University)
  • Accepted : 2010.12.06
  • Published : 2010.12.31

Abstract

The target of rapamycin (TOR) signaling pathway is a conserved pathway that regulates eukaryotic cell growth in response to environmental cues. Chemical genomic approaches that profile rapamycin sensitivity of yeast deletion strains have given insights into the function of TOR signaling pathway. In the present study, we analyzed the rapamycin sensitivity of yeast deletion library strains on synthetic medium. As a result, we identified 130 strains that are hypersensitive or resistant to rapamycin compared with wild-type cells. Among them, 36 genes are newly identified to be related to rapamycin sensitivity. Moreover, we found 16 strains that show alteration in rapamycin sensitivity between complex and synthetic media. We suggest that these genes may be involved in part of TOR signaling activities that is differentially regulated by media composition.

Keywords

References

  1. Abe, F., and Minegishi, H. (2008). Global screening of genes essential for growth in high-pressure and cold environments: searching for basic adaptive strategies using a yeast deletion library. Genetics 178, 851-872. https://doi.org/10.1534/genetics.107.083063
  2. Beck, T., and Hall, M.N. (1999). The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402, 689-692. https://doi.org/10.1038/45287
  3. Carvalho, J., and Zheng, X.F. (2003). Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein. J. Biol. Chem. 278, 16878-16886. https://doi.org/10.1074/jbc.M300429200
  4. Chan, T.F., Carvalho, J., Riles, L., and Zheng, X.F. (2000). A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR). Proc. Natl. Acad. Sci. USA 97, 13227-13232. https://doi.org/10.1073/pnas.240444197
  5. Di Como, C.J., and Arndt, K.T. (1996). Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10, 1904-1916. https://doi.org/10.1101/gad.10.15.1904
  6. Dudley, A.M., Janse, D.M., Tanay, A., Shamir, R., and Church, G.M. (2005). A global view of pleiotropy and phenotypically derived gene function in yeast. Mol. Syst. Biol. 1, 2005.0001.
  7. Fournier, M.L., Paulson, A., Pavelka, N., Mosley, A.L., Gaudenz, K., Bradford, W.D., Glynn, E., Li, H., Sardiu, M.E., Fleharty, B., Seidel, C., Florens, L., and Washburn, M.P. (2010). Delayed correlation of mRNA and protein expression in rapamycin-treated cells and a role for Ggc1 in cellular sensitivity to rapamycin. Mol. Cell Proteomics 9, 271-284. https://doi.org/10.1074/mcp.M900415-MCP200
  8. Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., Andre, B., Arkin, A.P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K.D., Flaherty, P., Foury, F., Garfinkel, D.J., Gerstein, M., Gotte, D., Guldener, U., Hegemann, J.H., Hempel, S., Herman, Z., Jaramillo, D.F., Kelly, D.E., Kelly, S.L., Kotter, P., LaBonte, D., Lamb, D.C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S.L., Revuelta, J.L., Roberts, C.J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D.D., Sookhai-Mahadeo, S., Storms, R.K., Strathern, J.N., Valle, G., Voet, M., Volckaert, G., Wang, C.Y., Ward, T.R., Wilhelmy, J., Winzeler, E.A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J.D., Snyder, M., Philippsen, P., Davis, R.W., and Johnston, M. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387-391. https://doi.org/10.1038/nature00935
  9. Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., Avruch, J., and Yonezawa, K. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110, 177-189. https://doi.org/10.1016/S0092-8674(02)00833-4
  10. Heitman, J., Movva, N.R., Hiestand, P.C., and Hall, M.N. (1991). FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88, 1948-1952. https://doi.org/10.1073/pnas.88.5.1948
  11. Huber, A., Bodenmiller, B., Uotila, A., Stahl, M., Wanka, S., Gerrits, B., Aebersold, R., and Loewith, R. (2009). Characterization of the rapamycin-sensitive phosphoproteome reveals that Sch9 is a central coordinator of protein synthesis. Genes Dev. 23, 1929-1943. https://doi.org/10.1101/gad.532109
  12. Huh, W.K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and O'Shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686-691. https://doi.org/10.1038/nature02026
  13. Jensen, L.J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., and von Mering, C. (2009). STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucl. Acids Res. 37, D412-416. https://doi.org/10.1093/nar/gkn760
  14. Kaeberlein, M., and Guarente, L. (2002). Saccharomyces cerevisiae MPT5 and SSD1 function in parallel pathways to promote cell wall integrity. Genetics 160, 83-95.
  15. Kaeberlein, M., Powers, R.W., 3rd, Steffen, K.K., Westman, E.A., Hu, D., Dang, N., Kerr, E.O., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005). Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310, 1193-1196. https://doi.org/10.1126/science.1115535
  16. Kamada, Y., Sekito, T., and Ohsumi, Y. (2004). Autophagy in yeast: a TOR-mediated response to nutrient starvation. Curr. Top Microbiol. Immunol. 279, 73-84. https://doi.org/10.1007/978-3-642-18930-2_5
  17. Kim, D.H., Sarbassov, D.D., Ali, S.M., King, J.E., Latek, R.R., Erdjument-Bromage, H., Tempst, P., and Sabatini, D.M. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110, 163-175. https://doi.org/10.1016/S0092-8674(02)00808-5
  18. Koltin, Y., Faucette, L., Bergsma, D.J., Levy, M.A., Cafferkey, R., Koser, P.L., Johnson, R.K., and Livi, G.P. (1991). Rapamycin sensitivity in Saccharomyces cerevisiae is mediated by a peptidyl-prolyl cis-trans isomerase related to human FK506-binding protein. Mol. Cell Biol. 11, 1718-1723. https://doi.org/10.1128/MCB.11.3.1718
  19. Lastauskiene, E., and Citavicius, D. (2008). Influence of RAS genes on yeast Saccharomyces cerevisiae cell viability in acid environment. Biologija 54, 150-155. https://doi.org/10.2478/v10054-008-0031-7
  20. Leidel, S., Pedrioli, P.G., Bucher, T., Brost, R., Costanzo, M., Schmidt, A., Aebersold, R., Boone, C., Hofmann, K., and Peter, M. (2009). Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458, 228-232. https://doi.org/10.1038/nature07643
  21. Liu, Z., and Butow, R.A. (2006). Mitochondrial retrograde signaling. Annu. Rev. Genet. 40, 159-185. https://doi.org/10.1146/annurev.genet.40.110405.090613
  22. Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M.N. (2002). Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457-468. https://doi.org/10.1016/S1097-2765(02)00636-6
  23. Mayer, C., and Grummt, I. (2006). Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25, 6384-6391. https://doi.org/10.1038/sj.onc.1209883
  24. Parsons, A.B., Brost, R.L., Ding, H., Li, Z., Zhang, C., Sheikh, B., Brown, G.W., Kane, P.M., Hughes, T.R., and Boone, C. (2004). Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22, 62-69. https://doi.org/10.1038/nbt919
  25. Rohde, J., Heitman, J., and Cardenas, M.E. (2001). The TOR kinases link nutrient sensing to cell growth. J. Biol. Chem. 276, 9583-9586. https://doi.org/10.1074/jbc.R000034200
  26. Rohde, J.R., Campbell, S., Zurita-Martinez, S.A., Cutler, N.S., Ashe, M., and Cardenas, M.E. (2004). TOR controls transcriptional and translational programs via Sap-Sit4 protein phosphatase signaling effectors. Mol. Cell Biol. 24, 8332-8341. https://doi.org/10.1128/MCB.24.19.8332-8341.2004
  27. Sherman, F. (2002). Getting started with yeast. Methods Enzymol 350, 3-41. https://doi.org/10.1016/S0076-6879(02)50954-X
  28. Snowdon, C., Hlynialuk, C., and van der Merwe, G. (2008). Components of the Vid30c are needed for the rapamycin-induced degradation of the high-affinity hexose transporter Hxt7p in Saccharomyces cerevisiae. FEMS Yeast Res. 8, 204-216. https://doi.org/10.1111/j.1567-1364.2007.00327.x
  29. Takeda, M., Chen, W.J., Saltzgaber, J., and Douglas, M.G. (1986). Nuclear genes encoding the yeast mitochondrial ATPase complex. Analysis of ATP1 coding the F1-ATPase alpha-subunit and its assembly. J. Biol. Chem. 261, 15126-15133.
  30. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003). STRING: a database of predicted functional associations between proteins. Nucl. Acids Res. 31, 258-261. https://doi.org/10.1093/nar/gkg034
  31. Weinberger, M., Mesquita, A., Caroll, T., Marks, L., Yang, H., Zhang, Z., Ludovico, P., and Burhans, W.C. (2010). Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence. Aging (Albany NY) 2, 709-726. https://doi.org/10.18632/aging.100215
  32. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J.D., Bussey, H., Chu, A.M., Connelly, C., Davis, K., Dietrich, F., Dow, S.W., El Bakkoury, M., Foury, F., Friend, S.H., Gentalen, E., Giaever, G., Hegemann, J.H., Jones, T., Laub, M., Liao, H., Liebundguth, N., Lockhart, D.J., Lucau-Danila, A., Lussier, M., M'Rabet, N., Menard, P., Mittmann, M., Pai, C., Rebischung, C., Revuelta, J.L., Riles, L., Roberts, C.J., Ross-MacDonald, P., Scherens, B., Snyder, M., Sookhai-Mahadeo, S., Storms, R.K., Veronneau, S., Voet, M., Volckaert, G., Ward, T.R., Wysocki, R., Yen, G.S., Yu, K., Zimmermann, K., Philippsen, P., Johnston, M., and Davis, R.W. (1999). Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901-906. https://doi.org/10.1126/science.285.5429.901
  33. Wu, J., Tolstykh, T., Lee, J., Boyd, K., Stock, J.B., and Broach, J.R. (2000). Carboxyl methylation of the phosphoprotein phosphatase 2A catalytic subunit promotes its functional association with regulatory subunits in vivo. EMBO J. 19, 5672-5681. https://doi.org/10.1093/emboj/19.21.5672
  34. Xie, M.W., Jin, F., Hwang, H., Hwang, S., Anand, V., Duncan, M.C., and Huang, J. (2005). Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc. Natl. Acad. Sci. USA 102, 7215-7220. https://doi.org/10.1073/pnas.0500297102