The Oxytocinergic Neurons in Hypothamo-hypophysial Tract Contributes to CNS Pathway Innervating Ovary in Rat

시상하부-뇌하수체로 Oxytocin신경세포의 난소로 투사하는 중추신경로에 관한 연구

  • Byun, Kyung-Hee (Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science) ;
  • Oh, Jee-Hyun (Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science) ;
  • Jo, Seung-Mook (Department of Anatomy, Gachon University of Medicine and Science) ;
  • Lee, Bong-Hee (Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science)
  • 변경희 (가천의과학대학교 이길여암.당뇨연구원) ;
  • 오지현 (가천의과학대학교 이길여암.당뇨연구원) ;
  • 조승묵 (가천 대학 의학전문대학원 해부학교실) ;
  • 이봉희 (가천의과학대학교 이길여암.당뇨연구원)
  • Received : 2010.10.22
  • Accepted : 2010.11.16
  • Published : 2010.12.31

Abstract

The mammalian ovary is innervated by sympathetic and sensory neurons which contribute to regulating several aspects of ovarian function, including blood flow, steroidogenesis and follicular development. The existence of a neural connection between central neurons and the ovary has been rarely reported, but the mechanism underlying integration of ovarian activity to broader neuroendocrine responses has not been reported. We have now used a viral transneuronal tracing technique combined with a conventional retrograde labeling procedure of CT-HRP to demonstrate that oxytocin-producing neurons of the hypothalamus are synaptically connected to the ovary. Since ovarian activity is suppressed but the activity of oxytocin neurons is increased during breast feeding. Our finding that the oxytocinergic neural connection is likely to provide a direct transsynaptic mechanism by which the central nervous system maintains the state of infertility that accompanies lactation in mammals.

포유동물의 난소는 호르몬과 감각신경 및 교감신경의 지배를 받아 난소 내 혈류의 조절, 스테로이드 호르몬 생성 및 난포의 발달과 관계된 난소의 고유기능이 조절되고 있다. 본 실험에서는 통상적인 추적자인 CT-HRP와 Pseudorabies바이러스(PRV)의 Bartha strain을 신경추적자로 이용하여 뇌하수체 후엽 및 난소와 연결된 중추신경부위를 밝히고자 하였다. 또 oxytocin을 난소 지배 신경축속에서 동정함으로써 신경축내 oxytocinergic neuron들의 존재를 확인하고, 이들이 배란을 중심으로 한 난소생식주기에 따라 보이는 중추 내 oxytocin신경세포의 변화를 조사하고자 하였다. Sprague-Dawley 흰쥐를 대상으로 난소 내에 PRV를 주사하고 48시간 후 실험동물들은 4% paraformaldehyde-lysine periodae로 고정하였으며, 뇌를 적출하여 $30{\mu}m$ 두께의 관상연속 절편을 만들어 CTHRP, PRV 및 oxytocin에 대한 삼중염색을 시행하였다. 본 실험 결과 후뇌에서부터 전뇌에 이르기까지 PRV에 양성반응을 보인 신경핵들이 관찰되어 난소를 지배하는 신경축을 구성할 수 있었다. 또 시상하부의 뇌실옆핵에서 oxytocin, PRV와 CT-HRP에 삼중으로 염색된 세포가 관찰됨으로써 신경내분비축과 자율신경축이 공동으로 기원하고 있다는 것을 형태학적으로 보여주었다. 따라서 oxytocin은 이 두 계통 내에서 호르몬의 역할과 신경전달물질의 역할을 겸할 것이라는 것을 추측할 수 있었다.

Keywords

References

  1. Baljet B, Drukker J: The extrinsic innervation of the abdominal organs in the female rat. Acta Anat 104 : 24-267, 1979.
  2. Burden HW: The Vertebrate Ovary: Comparative Biology and Evolution. Plenum Press, New York, pp. 615-638, 1978.
  3. Card JP, Rinaman L, Lynn RB, Lee BH, Meade RP, Miselis RR, Enquist LW: Pseudorabies virus infection of the rat central nervous system: Ultrastnuctural characterization of viral replication, transport, and pathogenesis. J Neurosci 13 : 2515-2539, 1993.
  4. Dees WL, Hiney JK, McArthur NH, Johnson GA, Dissen GA, Ojeda SR: Origin and ontogeny of mammalian ovarian neurons. Endocrinol 147(8) : 3789-3796, 2006. https://doi.org/10.1210/en.2006-0394
  5. Delgado SM, Casais M, Sosa Z, Rastrilla AM: Ganglionic adrenergic action modulates ovarian steroids and nitric oxide in prepubertal rat. Endocr J 53(4) : 547-554, 2006. https://doi.org/10.1507/endocrj.K05-130
  6. Delgado SM, Escudero CG, Casais M, Gordillo M, Anzulovich AC, Sosa Z, Rastrilla AM: Ovaric physiology in the first oestral cycle: influence of noradrenergic and cholinergic neural stimuli from coeliac ganglion. Steroids 75(10) : 685-694, 2010. https://doi.org/10.1016/j.steroids.2010.04.005
  7. Gerendai I, Toth IE, Boldogkoi Z, Halasz B: Recent findings on the organization of central nervous system structures involved in the innervation of endocrine glands and other organs; observations obtained by the transneuronal viral double-labeling technique. Endocrine 36(2) : 179-188, 2009. https://doi.org/10.1007/s12020-009-9189-8
  8. Gerendai I, Toth IE, Boldogkoi Z, Medveczky I, Halasz B: Neuronal labeling in the rat brain and spinal cord from the ovary using viral transneuronal tracing technique. Neuroendocrinol 68(4) : 244-256, 1998. https://doi.org/10.1159/000054372
  9. Hsueh AJW, Adashi EY, Jones PBC, Welsh TH Jr: Hormonal regulation of the differentiation of cultured ovarian granulosa cells. Endocr Rev 5 : 76-127, 1984. https://doi.org/10.1210/edrv-5-1-76
  10. Jansen ASP, Van Nguyen X, Karpitskiy V, Mettenleiter TC, Loewy AD: Central command neurons of the sympathetic nervous system: Basis of the fight-or-flight response. Science 270 : 644-646, 1995. https://doi.org/10.1126/science.270.5236.644
  11. Kalantaridou SN, Zoumakis E, Makrigiannakis A, Lavasidis LG, Vrekoussis T, Chrousos GP: Corticotropin-releasing hormone, stress and human reproduction: an update. J Reprod Immunol 85(1) : 33-39, 2010. https://doi.org/10.1016/j.jri.2010.02.005
  12. Loewy AD: Viral Vectors. Academic Press, New York, pp. 349- 366, 1995.
  13. Kawakami M, Kubo K, Uemura T, Nagase M, Hayashi R: Involvement of ovarian innervation in steroid secretion. Endocrinol 109 : 136-145, 1981. https://doi.org/10.1210/endo-109-1-136
  14. Madekurozwa MC: An immunohistochemical study of ovarian innervation in the emu (Dromaius novaehollandiae). Onderstepoort J Vet Res 75(1) : 59-65, 2008.
  15. Marshall JM: Adrenergic innervation of the female reproductive tract: Anatomy, physiology and pharmacology. Ergebn Physiol 62 : 6-67, 1970. https://doi.org/10.1007/BF02628455
  16. McNeilly AS: Suckling and the control of gonadotropin secretion: The Physiology of Reproduction. Raven Press, New York, pp. 1179-1212, 1994.
  17. Morales L, Ricardo B, Bolanos A, Chavira R, Domínguez R: Ipsilateral vagotomy to unilaterally ovariectomized pre-pubertal rats modifies compensatory ovarian responses. Reprod Biol Endocrinol 13 : 5-24, 2007.
  18. Ojeda SR, Aguado L: Catecholamines as Hormone Regulators. Raven Press, New York, pp. 293-310, 1985.
  19. Ojeda SR, Lara HE: The Menstrual Cycle and Its Disorders. Springer- Verlag, Berlin, pp. 26-32, 1989.
  20. Ricu M, Paredes A, Greiner M, Ojeda SR, Lara HE: Functional development of the ovarian noradrenergic innervation. Endocrinol 149(1) : 50-56, 2008.
  21. Safarinejad MR: Reproductive hormones and hypothalamic-pituitary- ovarian axis in female patients with homozygous beta-thalassemia major. J Pediatr Hematol Oncol 32(4) : 259-266, 2010. https://doi.org/10.1097/MPH.0b013e3181cf8156
  22. Saper CB, Loewy AD, Swanson LW, Cowan WM: Direct hypothalamo- autonomic connections. Brain Res 117 : 305-312, 1976. https://doi.org/10.1016/0006-8993(76)90738-1
  23. Sirotkin AV: Effect of two types of stress (heat shock/high temperature and malnutrition/serum deprivation) on porcine ovarian cell functions and their response to hormones. Exp Biol 213 : 2125-2130, 2010. https://doi.org/10.1242/jeb.040626
  24. Toth IE, Banczerowski P, Boldogkoi Z, Toth JS, Szabo A, Halasz B, Gerendai I: Cerebral neurons involved in the innervation of both the adrenal gland and the ovary: A double viral tracing study. Brain Res Bull 77(5) : 306-311, 2008. https://doi.org/10.1016/j.brainresbull.2008.08.022
  25. Toth IE, Wiesel O, Boldogkoi Z, Balint K, Tapaszti Z, Gerendai I: Predominance of supraspinal innervation of the left ovary. Microsc Res Tech 70(8) : 710-718, 2007. https://doi.org/10.1002/jemt.20456
  26. Wakerley JB, Clarke G: Milk ejection and its control. The Physiology of Reproduction. Raven Press, New York, pp. 1131-1177, 1994.