Quantification of Storm Direction for a River Basin

하천유역에 대한 호우 방향성의 정량화

  • 박창열 (고려대학교 공과대학 건축사회환경공학부) ;
  • 유철상 (고려대학교 공과대학 건축사회환경공학부)
  • Received : 2010.08.31
  • Accepted : 2010.11.17
  • Published : 2010.12.31

Abstract

This study quantified the storm direction for a river basin by applying the von Mises distribution, also determined the representative storm direction. Additionally, the whole procedure was repeated for several storm types such as frontal, typhoon and convective storms for their comparison. From the results derived by analyzing a total of 101 storm events for the Naesung river basin, the von Mises distribution was found to explain the directional characteristics of storms. The representative moving directions derived for three different storm types were significantly different each other, which is coincident with the climate of Korea. The results derived in this study could be helpful to estimate more quantitatively the difference in the runoff response with respect to the moving direction of a storm.

본 연구에서는 하천유역에 대한 호우의 방향성을 von Mises 분포를 이용하여 정량화하고, 그 대표 이동방향을 결정하였다. 추가로 호우 발생특성(장마, 태풍, 대류성 강우)에 따른 호우의 방향적 특성을 도출하여 비교하였다. 대상유역인 내성천 유역에서 수집된 101개 호우사상을 이용한 결과, von Mises 분포는 대상 호우사상의 방향적 특성이 적절히 표현됨을 확인하였다. 또한 호우의 이동방향은 그 발생특성에 따라 차이를 보이며, 이들 특성은 한반도의 기후특성과도 일치함을 확인하였다. 본 연구의 결과는 호우 이동방향에 따른 유출응답의 차이를 보다 정량적으로 파악하는데 도움이 될 수 있을 것이다.

Keywords

References

  1. 기상청 홈페이지 www.kma.go.kr.
  2. 김진관, 김민석, 양동윤, 임규호 (2007) 한국에서의 최근 태풍피해에 따른 태풍의 이동경로 및 강우분포에 대한 연구, 한국지형학회지, 한국지형학회, 제14권, 제1호, pp. 77-85.
  3. 건설교통부 (2000) 1999년도 수자원관리기법개발연구조사 보고서.
  4. 박종길, 김병수, 정우식, 김은별, 이대근 (2006) 한반도에 영향을 주는 태풍의 통계적 특성 변화, 한국기상학회 논문집, 한국기상학회, 제16권, 제1호, pp. 1-17.
  5. 박창용, 문자연, 차은정, 윤원태, 최영은 (2008) 최근 한반도 여름철 강수특성의 변화, 대한지리학회, 제43권, 제3호, pp. 324-336.
  6. 이동규, 장동언, 위태권 (1992) 한반도에 접근하는 태풍, 1960 - 1989 제1부 : 통계와 종관 개요, 한국기상학회 논문집, 한국 기상학회, 제28권, 제2호, pp. 133-147.
  7. 유철상, 박창열 (2010) 호우사상의 대표 이동방향 결정, 한국방재학회 논문집, 한국방재학회, 제10권, 제2호, pp. 91-102.
  8. 윤강훈, 서봉철, 신현석 (2004) 크리깅 기법을 이용한 낙동강 유역 홍수강우의 공간해석 연구, 한국수자원학회 논문집, 한국수자원학회, 제37권, 제2호, pp. 233-240.
  9. 전일권 (2001) 강우 관측 자료를 이용한 대청댐 유역의 호우 추 적, 대한토목학회 논문집, 대한토목학회, 제21권, 제6-B호, pp.589-598.
  10. 최계운, 이희승, 안상진 (1993) 분포형 모델을 이용한 유역내 이동강우의 유출해석(2) - 모델의 적용, 한국수자원학회 논문집, 한국수자원학회, 제26권, 제1호, pp. 81-91.
  11. 최계운, 강희경, 박용섭 (2000). GIS를 활용한 유역내 이동강우에 의한 유출특성 연구, 한국수자원학회 논문집, 한국수자원학회, 제33권, 제6호, pp. 793-804.
  12. 한건연, 전민우, 최규현 (2004) 이동강우에 의한 유출영향분석, 한국수자원학회 논문집, 한국수자원학회, 제37권, 제10호, pp. 823-836.
  13. 한건연, 전민우, 최규현 (2006) 유역형상에 따르는 이동강우의 유 출영향분석 (I) - 대칭유역형상, 대한토목학회 논문집, 대한토 목학회, 제26권, 제1B호, pp. 15-25.
  14. Anderson, H.S., Jacobsen, P., and Harrmoës, P. (1991) The effect of rainfall movement on peak flow in sewers. Atmospheric Research, Vol. 27, pp. 129-135. https://doi.org/10.1016/0169-8095(91)90013-M
  15. Chang, C.L. (2007) Influence of moving rainstorms on watershed responses. Environmental Engineering Science, Vol. 27, No. 10, pp. 1353-1360.
  16. Choi, K.S., and Kim, B.J. (2007) Climatological characteristics of tropical cyclones making landfall over the Korean peninsula. Journal of the Korean Meteorological Society, Vol. 43, No. 2, pp. 97-109.
  17. Fisher, N.I. (1993) Statistical Analysis of Circular Data. Cambridge University Press.
  18. Fisher, N.I., and Hall, P.G. (1989) Bootstrap confidence regions for directional data. Journal of American Statistical Association, Vol. 84, pp. 996-1002. https://doi.org/10.2307/2290075
  19. Fisher, N.I., and Hall, P.G. (1990) New statistical methods for directional data I. Bootstrap comparison of mean directions and the fold test in palaeomagnetism. International Journal of Geophysics, Vol. 101, pp. 305-313. https://doi.org/10.1111/j.1365-246X.1990.tb06570.x
  20. Huff, F.A. (1967) Time distribution of rainfall in heavy storm. Water Resources Research, Vol. 3, No. 4, pp. 1007-1019. https://doi.org/10.1029/WR003i004p01007
  21. Jensen, M. (1984) Runoff pattern and peak flows from moving block rains based on linear time-area curve. Nordic Hydrology, Vol. 15, No. 3, pp. 155-168.
  22. Johnson, E.R., and Bras, R.L.. (1979) Real-time estimation of velocity and covariance structure of rainfall events using telemetered raingage data - A comparison of methods. Journal of Hydrology, Vol. 44, pp. 97-123. https://doi.org/10.1016/0022-1694(79)90149-5
  23. Lima, J.L.M.P.D., and Singh, V.P. (2002) The influence of storm movement on overland flow. Advanced Water Resources, Vol. 25, No. 7, pp. 817-828. https://doi.org/10.1016/S0309-1708(02)00067-2
  24. Lima, J.L.M.P.D., and Singh, V.P. (2003) Laboratory experiments on the influence of storm movement on overland flow. Physics and Chemistry of the Earth, Vol. 28, pp. 277-282. https://doi.org/10.1016/S1474-7065(03)00038-X
  25. Lima, J.L.M.P.D., Singh, V.P., and Lima, M.I.P.D. (2003) The influence of storm movement on water erosion: Storm direction and velocity effects. Catena, Vol. 52, No. 1, pp. 39-56. https://doi.org/10.1016/S0341-8162(02)00149-2
  26. Marshall, R.J. (1980) The estimation and distribution of storm movement and storm structure using a correlation analysis technique and raingauge data. Journal of Hydrology, Vol. 48, pp. 19-39. https://doi.org/10.1016/0022-1694(80)90063-3
  27. Niemczynowicz, J. (1984) Investigation of the influence of rainfall movement on runoff hydrograph. Part I - Simulation on conceptual catchment. Nordic Hydrology, Vol. 15, pp. 57-70.
  28. Niemczynowicz, J. (1987) Storm tracking using rain gauge data. Journal of Hydrology, Vol. 93, pp. 135-152. https://doi.org/10.1016/0022-1694(87)90199-5
  29. Niemczynowicz, J. (1988) The rainfall movement - A valuable complement to short-term rainfall data. Journal of Hydrology, Vol. 104, pp. 311-326. https://doi.org/10.1016/0022-1694(88)90172-2
  30. Niemczynowicz, J., and Jönsson, O. (1981) Extreme rainfall in Lund 1979-1980. Nordic Hydrology, Vol. 12, pp. 129-142.
  31. Niemczynowicz, J., and Dahlblom, P. (1984) Dynamic properties of rainfall in Lund. Nordic Hydrology, Vol. 15, pp. 9-24.
  32. Pilgrim, D.H., and Cordery, I. (1975) Rainfall temporal patterns for design floods. Journal of the Hydraulics Division, ASCE, Vol. 101, No. HY1, pp. 81-95.
  33. Singh, V.P. (1998) Effect of the direction of storm movement on planar flow. Hydrological Processes, Vol. 12, No. 1, pp. 147-170. https://doi.org/10.1002/(SICI)1099-1085(199801)12:1<147::AID-HYP568>3.0.CO;2-K
  34. Singh, V.P. (2002) The influence of the pattern of moving rainstorms on overland flow. Water Resources Research, Vol. 25, No. 7, pp. 817-828. https://doi.org/10.1016/S0309-1708(02)00067-2
  35. Takeuchi, K. (1985) An automatic storm tracking method used to analyze travelling characteristics of heavy rain areas. Natural Disaster Science, Vol. 7, No. 1, pp. 13-24.
  36. Townson, J.M., and Ong, H.S. (1974) A laboratory study of runoff caused by line storm moving over a conceptual catchment. Water Services, August, USA.
  37. Upton, G.J.G. (2002) A correlation-regression method for tracking rainstorms using rain-gauge data. Journal of Hydrology, Vol. 261, pp. 60-73. https://doi.org/10.1016/S0022-1694(01)00618-7
  38. Yen, B.C., and Chow, V.T. (1969) A laboratory study of surface runoff due to moving rainstorms. Water Resources Research, Vol. 5, No. 5, pp. 989-1006. https://doi.org/10.1029/WR005i005p00989
  39. Zawadzki, I.I. (1973) Statistical properties of precipitation patterns. Journal of Applied Meteorology, Vol. 12, pp. 459-472. https://doi.org/10.1175/1520-0450(1973)012<0459:SPOPP>2.0.CO;2