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Abstract

This article concerns the forecasting in binomial AR(p) models which is proposed by WeiB (2009b) for
time series of binomial counts. Our method extends to binomial AR(p) models a recent result by Jung and
Tremayne (2006) for integer-valued autoregressive model of second order, INAR(2), with simple Poisson inno-
vations. Forecasts are produced by conditional median which gives ‘coherent’ forecasts, and we estimate the
forecast distributions of future values of binomial AR(p) models by means of a Monte Carlo method allowing for
parameter uncertainty. Model parameters are estimated by the method of moments and estimated standard errors
are calculated by means of block of block bootstrap. The method is fitted to log data set used in WeiB (2009b).
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1. Introduction

A binomial thinning operation developed by Steutel and van Harn (1979) is the most popular operation
which is used to model integer-valued time series data. The purpose of the binomial thinning is to
ensure the integer discreteness of the process. It is defined as @ o X = ¥X ¥;, where Y; are assumed
to be i.i.d. Bernoulli random variables with P(Y; = 1) = @, P(Y; = 0) = 1 — @, and independent of
X. The first integer-valued ARMA(INARMA) model using binomial thinning operation is INAR(1)
model which is introduced by McKenzie (1985) and independently by Al-Osh and Alzaid (1987).
Since INAR(1) model is subcritical Galton-Watson process with immigration, and also is related to
the M/M/oo queueing system, there are many applications in diverse scientific fields ranging from
medicine to economics, environmentology, insurance, etc. And there are various INARMA models,
including INAR(p) models of higher auto-regressive order (Alzaid and Al-Osh, 1988, 1990; Du and
Li, 1991; Al-Osh and Aly, 1992), generalized-INAR models (Latour, 1998 Brinnéds and Hellstrom,
2001) and INARS model (Kim and Park, 2008; Park et al., 2006).

But INAR(1) model cannot be directly applied to process with a finite range of counts, for exam-
ple, binomial distribution. The reason is that any distribution of the discrete self-decomposable(DSD)
family which contains the negative binomial distribution and the generalized Poisson distribution can
be a possible marginal distribution of INAR(1) model.

McKenzie (1985) proposed binomial AR(1) model which is essentially designed to model bino-
mial distribution, still using binomial thinning operation. Recently Weill (2009a) used this model in
statistical process control(SPC), and proposed various control charts to monitor correlated binomial
distribution. Also Weii (2009b) proposed a new class of p™ order autoregressive models, which
coincide with the binomial AR(1) model for p = 1.
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In this paper, we are concerned with developing forecasting procedures in a binomial AR(p)
model. In fact, there are some difficulty in deriving confidence intervals of forecasts in models. us-
ing binomial thinning operations, because of the distributional complexity accrued from the binomial
thinning operations, therefore particular methods were raised by researchers (Kim and Park, 2006a;
Kim and Park, 2006b; Jung and Tremayne, 2006; Freeland and McCabe, 2004).

Freeland and McCabe (2004) emphasized the needs of forecasting the h-step ahead conditional
distribution and coherent forecasting procedures, in cases where the variable is discrete and the car-
dinality of the support is small. The coherent forecasting procedures means preserving the inte-
ger structure of the data in generating the forecasts. Freeland and McCabe (2004) concerned with
INAR(1) model, and later Jung and Tremayne (2006) extended Freeland and McCabe (2004)’s method
to INAR(2) model.

In this article, we will adopt Jung and Tremayne (2006)’s approach to binomial AR(p) model. The
set-up of the present paper is as follows. In Section 2, we briefly review the binomial AR(1) and the
binomial AR(p) model. In Section 3, we estimate the forecast distributions of future values of bino-
mial AR(p) models by means of a Monte Carlo method allowing for parameter uncertainty. Model
parameters are estimated by the method of moments and estimated standard errors are calculated by
means of block of block bootstrap. Section 4 gives an empirical example of forecasting procedure
using the method in Section 3. Finally Section 5 provides some concluding remarks.

2. The Binomial Autoregressive Model

In Section 2, we briefly review elementary properties of binomial AR(1) and binomial AR(p) model.

2.1. The Binomial AR(1) model

Definition 1. (Binomial AR(1) model, McKenzie, 1985) Fixn € N. Let n € (0, 1), and p € [max(-n/

(1 -m), =1 = m)/n), 11. Define B = n(1 — p) and @ = B + p. The process {X,},
X;=aoX,y+Bo(n—-Xy), t=1, Xo~ B(n,n) 2.1

is said to be a Binomial AR(1) model, where all thinnings are performed independently of each other,

and the thinnings at time t are independent of {X;, s < t}.

The binomial AR(1) model can be interpreted as follows. There are » units, which are independently
of each other, either in state 1 or state 0. Let X, be the number of units being in state 1 at time ¢,
and X;_; be the number of units being in state 1 at time 7 — 1. Then X, is composed of two random
components: the number of units which are are still in state 1 at time ¢, @ o X,_;, and the number of
units which moved from state 0 to state 1 at time ¢, 8o (n — X,_y).

X = ao X + Bon—X-1)
N’ N e
still in state 1 at time ¢t from state O to state 1 at time t

A binomial AR(1) model is a stationary Markov chain with » + 1 states, and the properties of the
binomial AR(1) model are stated as follows.

PI1 E(X,) = nn, Var(X,) = nn(1 — 1), Corr(X,, X;—i) = p*.
P.2 The transition probability, P(X, = k|X,_; =), k,[=0,...,nis
min(k,l} INn—1
Z ( )( )a’m(l - a)l—"’l(l _ﬂ)n-[+m_k‘
mi\k —m

m=max(0,k+I-n)
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P3 E(Xi|X;1) = pX,_; + np.
P4 Var(X|X;-1) = p(1 - p)(1 - 2m)X,_; + nB(1 - p).

Figure 1(a)«(f) shows simulated sample paths for binomial AR(1) processes for different parameter
combinations. The realization in Figure 1(a) is generated using n = 6, 7 = 0.5, p = 0.5, the corre-
sponding sample autocorrelation function(SACF) and sample partial autocorrelation function(SPACF)
of that series are shown in Figure 1(b) and (c). The SACF decays exponentially and there are spike
in the direction of positive at 1 lag in SPACF. In Figure 1(d), a simulated sample path is based on the
parameter values n = 6, 7 = 0.5, p = —0.5. The corresponding SACF and SPACF are depicted in
Figure 1(e) and (f). We can see oscillating behaviour in SACF, and there are spike in the direction of
negative at 1 lag in SPACF.

2.2. The Binomial AR(p) model

WeiB (2009b) extended the binomial AR(1) model to a higher-order autoregressive model as a tool for
modelling and generating sequences of dependent binomial process. To simplify the notation, Weif3
(2009b) used a random function, fi(X;), which is defined as fi(X,) = @ o;1x X; + 8 01 (n — X;), where

0. denotes that the thinning is performed at time ¢ + k. Notice that the time index below the
thinning operation indicates the time when the corresponding thinning is performed.

Definition 2. (Binomial AR(p) model, Weifs, 2009b) Let w € (0, 1) and p € [max(-r/(1 — n), —(1 — )/
n), 1]. Define B = n(1 — p) and & = B + p. Let {D,} be an i.i.d. multinomial distribution with parame-
tersD; = (Dyy,...,D;,) ~ MULT(1; ¢y, ..., ¢p). Let a process {X,} with range {0, . .., n} follow the
recursion

X, =Dij(@o, X,oy + B o, (n— X))+ + Dt,p(a’ o Xyp+PBo(n— Xt—p))

= i Dy fi(X;s). 22)
i=1
It is said to be a binomial AR(p) process, if conditions C.1 ~ C.3 are satisfied. It is called a binomial
AR(p)-Independent thinning process, if conditions C.1 ~ C.4 are satisfied.
(C.1) The thinnings at time t are performed independently of each other and of {D;).
(C.2) D; = (D1y,...,D,,) is independent of all {X,, s < t} and {(filXs),s<t,j=1,...,p)
(C.3) The conditional probability
P(fi(X) = in, s oK) = iplX, = X1, Xoo = Xk 2 15 fi(Kic) = 2ok < 1, j = 1., p)
=P(AG) = i1,..., [,(X) = i,IX, = x).

(C.4) All thinnings fi(X,), ..., fp(X;) are conditionally independent, conditioned on X,.
With this construction, X; can be defined by

ao; Xi_1 +Bo, (n—X;—1), with probability ¢,

X, = : :
o X, +Bo(n—-X._,), with probability ¢,,.
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Figure 1: Simulated sample paths and sample ACF and PACF of a Binomial AR(1) process and a Binomial AR(2)
process: (a) simulated sample paths for a binomial AR(1) process, n = 6,m = 0.5,p = 0.5; (b) sample ACF of
(@); (c) sample PACF of (a); (d) simulated sample paths for a binomial AR(1) process, n = 6,n = 0.5,p = —0.5;
(e) sample ACF of (d); (f) sample PACF of (d); (g) simulated sample paths for a binomial AR(2) process,
n=6,1=05,0=05,¢ =0.5; (h) sample ACF of (g); (i) sample PACF of (g); (j) simulated sample paths for a
binomial AR(2) process, n = 6,7 = 0.5,p = 0.5, ¢, = 0.2; (k) sample ACF of (j); (I) sample PACF of (j).

And due to the additional assumption C.4, WeiBl (2009b) showed that the autocorrelation function of
binomial AR(p)-Independent thinnings process satisfies the pth order difference equation

14
pk) = p ) dipllk = i),
i=1

(2.3)
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and the k™ partial autocorrelation ¢; = 0,k > p. Hence, based on this fact, we can identify the model
order p. This feature of a binomial AR(p)-Independent thinnings process makes it a satisfactory
model for time series of binomial counts. Henceforth we will denote a binomial AR(p)-Independent
thinnings process as BiAR(p)-Ind process.

Figure 1(g)—(1) depicts the simulated observations for BIAR(2)-Ind model for different parameter
combinations. Figure 1(g) is that of n = 6,7 = 0.5,p = 0.5,¢; = 0.5, and Figure 1(j) is that of
n==6m=05p=0.5¢ = 0.2. In both cases, all parameters are the same, except for ¢;. We can
observe the SPACF for each series(Figure 1(i) and (1)) is essentially zero for lags larger than 2. The
SACF(Figure 1(h)) and the SPACF(Figure 1(i)) of n = 6,7 = 0.5, = 0.5, ¢1 = 0.5 has spike at lagl
and lag?2, but those(Figure 1(k) and (1)) of n = 6,7 = 0.5, p = 0.5, ¢; = 0.2 have only at lag2.

For estimation and forecasting purposes the conditional probabilities P(Xr,, = xpXr = x7,
X7_1 = xr_1,...) play a key role. Weil (2009b) presented 1-step ahead conditional distribution of
BiAR(p)-Ind model, but when 4 > 2, h-step ahead conditional distribution is not easily obtained
because of thinning operations.

3. Forecasting in the Binomial AR(p)-Independent Model

Prediction is one of the main goals in time series analysis. Conditional on {X, ..., X7}, the minimum
mean square error(MSE) predictor of X7y, 2 > 0 is given by the conditional mean of E(Xy,4Xr, ...,
X)). Despite its optimality property, forecasting based on the conditional expectation suffer from the
fact that it could not produce integer value in the count data context. In contrast, the conditional
median could produce coherent forecasts, preserving the integer structure of the data in generating
the forecasts. The coherent forecasting in integer-valued time series model was first developed by
Frecland and McCabe (2004) for a INAR(1) model, and Jung and Tremayne (2006) provided the
methods for a INAR(2) model.

Also they all stressed the need of the forecasts for each point mass of the distribution, in the
case of analysis of low count time series. A density forecast is an estimate of the future probability
distribution of a random variable, conditional on the data available at the time the forecast is made. A
density forecasting is receiving increasing interest even in continuous time series analysis, in particular
macroeconomics and finance (Tay and Wallis, 2000). In this section, we adopt the procedure in
Jung and Tremayne (2006) to obtain coherent forecasting and the prediction for point mass of the
distribution, in BIAR(p)-Ind model.

These schemes use bootstrap techniques to estimate asymptotic standard errors of the YW esti-
mates and to forecast distributions of future values allowing for parameter uncertainty. Summarizing,
the steps for obtaining bootstrap prediction intervals are:

Step 1: Let {Xi,...,Xr} denote the observations, and choose a model order p by examination the
patterns in the SACF and the the SPACF, because a BiAR(p)-Ind process satisfies (2.3).

Step 2: Estimate the model parameters by the method of moments based on the Yule-Walker equation
(2.3), that is,

Zl?;l Xi

==

s

[7
$:p(k — i), on condition that Z ¢ = 1. (3.1)

i=1

>
=2
z
Il
»
DM

]
—_
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Step 3:

Step 4:
Step 5:
Step 6:

Step 7:

Step 8:
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To estimate the asymptotic standard error of the Yule-Walker estimator and to allow for the
uncertainty in parameter estimation in estimating the forecast distribution, implement the
blocks of blocks bootstrap approach suggested by Kiinsch (1989). To implement resampling
blocks of blocks, define a new (p + 1)-variate process ¥; = (X;, . .. ,X,-+p)', and define Y using
{X1,...,Xr} as follows.

Xy X - Xryp X1 X2 - Xirp

X2 X3 o Xrpet || Xea Xog - Xorpn
Y= b Y=l e T T T L e

Xpi1 Xovp -+ X7 Xpr11 Xpr12 0 Xprir—p

Note that the sample lag covariance of order k,0 < k < p is

T-k T-k
90 = = 35 (%= %) (s~ %)= — 2 (% R0) (s~ Fr). - G3)

Fix a block size ,1 < I < T - p — 2, and define the blocks in terms of Ys as B; =
Y. Y1), 1 < j<T-1+1. Select k blocks randomly from the collections {B; :

1<i<T-p-1+1}togenerate Y7,..., Yltr1 Y., Yy, where T = kl. Then the
bootstrap version of (k) based on bootstrap sample is

T—k

Z X1, - X ) (X1 - X)), O<ks<p. (3.4)

Calculate the Yule-Walker estimator & = &, p*, ¢1‘, ... ,$;) using (3.4).
Repeat Step 3-4 B; times, and store {sz*, b=1,...,B;}

: Ak
Draw one parameter estimates vector randomly with replacement from the set (&, ,b =
1,...,By}in Step 5, and generate X7, using selected parameter estimates ¥ = (@, p* ¢1, ceos
#},) as follows.

Xrap = Dfl (&* 0 Xyon1 + 58 o (n - Xt+h—1)) +eeet D:p (d’* Oy Xt+h—p +p" o (n - Xz+h—p)) ,

where X7.; = X7, j < 0 and (D D;,) ~MULT(1; 8}, ..., 8}).

PSERRRE

For each selected parameter estimates ¥ = (7, p*, ¢1, . .,&;), repeat Step 6 B, times to
obtain a single estimate of the forecast distribution and its median, say, Med(k). This step
proposes point forecasts based on the integer-valued median of the forecast distribution.

Repeat Step 6-7 B times to assess the variability of the point masses of the forecast distribu-
tion and to incorporate parameter uncertainty. Therefore, we obtain n + 1 sets as as follows:

k(7 * Bo *{(i * ¥ * B
(PO =05 (PO = 1)) (PO, =), G
Note that the number of elements of n + 1 sets are different, and theses number are not Bs.
The reason is that there is not the bootstrap sample proportion of particular value depending

. on the selected parameter estimates ¥ = = (a",p", ¢1, .. ¢p) in Step 6. The endpoints of the

100 x (1 — @)% confidence intervals for the estimated probablhtles of the forecast distribution
are given by quantiles of each of these n + 1 sets.
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Figure 2: Time series plot, histogram, sample ACF and PACF of the access counts: (a) Time series plot; (b)
histogram; (c) sample ACF; (d) sample PACF.

4. Empirical Application

In this section, we will apply the methods in Section 3 to the data used in Weifl (2009b) who originally
introduced binomial AR(p) model. The data are the number of access, say X, to the home directory of
six sever of the Department of Statistics of the University of Wiirzburg for each minute. The analyzed
data are collected on 29 day of November, 2005 and consist of 661 observations. Evidently, X, take
valuein {0, 1,...,6}.

We divide the whole data set into two different parts as modelling and forecasting. The set {X; :
357 <t < 656} is used in modelling, and the set {X, : 657 < t < 661} is used in forecasting. Therefore,
we use 300 observations as sample sizes, i.e., T = 300, and the prediction horizon ~are h = 1,.. ., 10.

The Figure 2 displays histogram, plot, SACF and SPACF of the 300 observations. Although the
possible range of X, is from 0 to 6, the observed counts are composed of 56.67% 0, 32.67% 1, 8.00% 2,
2.00% 3 and 0.67% 4. To begin with we consider both BiAR(2)-Ind model and BiAR(3)-Ind model,
and we will obtain YW estimates for both models by solving (3.1), and will estimate asymptotic
standard errors of YW estimates by bootstrap method described in Section 3. And we will choose
one between the two, and will compute the forecast distribution for the selected model. For the block
length [, we choose a fixed number 10 after a careful examination of Table 8.2 in Davison and Hinkley
(1997). We set B; = 1000 in Step 5, B, = 1499 in Step 7 and B; = 100 in Step 8, and all Monte Carlo
simulations are performed using the IML procedure in SAS version 9.2.

Table 1 shows that the YW estimates and the estimated values of the bootstrap standard errors for
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Table 1: YW estimates and the estimated values of the bootstrap standard errors for the YW estimates for
Binomial AR(2) and Binomial AR(3) model

p=2 p=3
Parameter YW Estimate Bootstrap Std. Err.T YW Estimate Bootstrap Std. Err.
b 0.0955556 0.0095526 0.0955556 0.0097945
P 0.3594186 0.1141124 0.3868873 0.1119591
¢ 0.6091725 0.1524441 0.5503524 0.1563003
[53) 0.3908275 0.1524441 0.3388118 0.1269084
3 0.1108358 0.1390467

I \/ 2113:1 1/(B - 1)(*® — 5*)2, where & = 1/B Zle &®), with 6*® the bootstrap YW estimator evaluated on the b™
bootstrap replication and B = 1000

Table 2: Results of median forecasts for the 100 simulation runs

Binomial AR(2) Med Observed Value
1:89%, 2:11% 1
0:23%, 1:77%
0:60%, 1:40%
0:89%, 1:11%
0:89%, 1:11%
0:89%, 1:11%
0:89%, 1:11%
0:89%, 1:11%
0:89%, 1:11%
0:89%, 1:11%

non s

1l
=0 00NN R W=

[==]

1
0
1
0

o

T
1l

Table 3: 95% CI for estimated probabilities of the forecast distribution based on Binomial AR(2)

h 0 1 2 3 4 5 6
h=1 ( 7.805, 46.498) (31.021,44.630)  (12.675,41.027)  (1.735,17.612)  (0.067,2.536)  (0.067,0.234)
h=2 (15.811,53.436)  (34.223,43.296)  ( 9.006, 35.157) (0.867, 8.539) (0.067,1.067)  (0.067, 0.133)
h=3 (24.016,59.306)  (31.955,41.628)  ( 7.005, 27.018) (0.600, 8.072) (0.067,1.067)  (0.067, 0.200) .
h=4 (29.953,60.374)  (31.421, 42.829) ( 6.738,22.548) (0.534, 5.670) (0.067,0.867)  (0.067,0.133)  0.067
h=5 (34.089, 60.774)  (30.954, 41.695) ( 6.805, 19.480) (0.467, 4.870) (0.067,0.734)  (0.067,0.133)  0.067
h=6 (37.825,61.641)  (30.954, 40.827) ( 6.538, 17.745) (0.534, 4.003) (0.067,0.600)  (0.067,0.133) .
h=17 (39.760, 61.975)  (30.487. 40.827) ( 5.670, 16.211) (0.600, 3.869) (0.067,0.600)  (0.067,0.133)
h=8 (41.628,61.107)  (31.154, 40.027) ( 6.204, 15.944) (0.534, 3.402)  (0.067, 0.400) 0.067
h=9 (42.962,61.508)  (30.487,39.293)  ( 6.404, 15.143) (0.534, 3.736) (0.067, 0.467) 0.067
h=10 (43.162,61.241)  (30.554, 39.093) ( 6.204, 15.143) (0.534, 2.802) (0.067, 0.400) 0.067

the YW estimates. We note that all estimated parameters in BIAR(2)-Ind model are significant, but ¢;
in BiAR(3)-Ind model is not, therefore, we will present h-step ahead estimated forecast distribution
for the BiAR(2)-Ind model for the access counts data.

Table 2 present results of the median forecasts from the B; = 100 simulation in the second column
and the observed value in the third column. Each median value is obtained from the B, = 1499
forecast values, so it is the 750" ranked forecast value and B, = 1499 forecast values are generated
from randomly selected parameter estimates vector. For = 1, 89% of 100 median forecasts are 1 and
11% are 2, so the mode of the estimated sampling distribution of the median forecasts from B3 = 100
replications is 1 and this value coincide with the observed count value. For # = 2,3, 5, the mode of
B3 = 100 replications coincide with the observed count value.

Figure 3 displays the box-whisker plots of one, two, three, four, five and ten ahead estimated
forecast distributions for the BiAR(2)-Ind model for the access counts. It is based on taking the
estimated probabilities for each value {0,1,2,...,6} from each of the B; = 100 estimates of the
forecast distribution. And Table 3 gives more information, that is, 95% confidence intervals(CI) for
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Figure 3: Box-Whisker plots of one, two, three, four, five and ten ahead estimated forecast distributions for the
Binomial AR(2) model for the access counts.

the estimated probabilities at the different mass points. Notice that as lead time & gets greater, the CI
intervals for the estimated probabilities at the different mass points are similar. The reason is that since
BiAR(2)-Ind model is stationary, the forecast distributions approach to the marginal distributions.
Also we can note that the observed frequencies, 56.67% 0, 32.67% 1, 8.00% 2, 2.00% 3, are within
the corresponding 95% CI limits at & = 10.

5. Conclusion

Since the integer-valued ARMA(INARMA) models using thinning operations have a correlation struc-
ture similar to standard ARMA models, and may be interpreted as a queue, a birth and death process
or a branching process with immigration, INARMA models have great appeal for modeling time se-
ries of counts. Recently Wei3 (2009a) and Weil (2009b) proposed autoregressive models for time
series of binomial counts which has a special case having usual AR(p)-like autocorrelation structure.
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In this paper, we focused on the methods forecasting procedures in a binomial AR(p) model, in
particular coherent forecasting procedures. Our approach relies on the method introduced by Jung and
Tremayne (2006). We estimated the forecast distributions of future values of binomial AR(p) models
by means of a Monte Carlo method allowing for parameter uncertainty. We employed it to real data
set which are the number of access to the home directory of six sever of the Department of Statistics
of the University of Wiirzburg for each minute. The result demonstrated its usefulness in binomial
AR(p) model.
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