DOI QR코드

DOI QR Code

Evaluation of the Antibacterial Activity of Rhapontigenin Produced from Rhapontin by Biotransformation Against Propionibacterium acnes

  • Kim, Jeong-Keun (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University) ;
  • Kim, Na-Rae (Department of Clinical Laboratory Science, College of Health Science, Korea University) ;
  • Lim, Young-Hee (Department of Clinical Laboratory Science, College of Health Science, Korea University)
  • Published : 2010.01.31

Abstract

Biotransformation is often used to improve chemical activity. We evaluated the antimicrobial activity of rhapontigeuin, converted from rhapontin after treatment with Pectinex. Rhapontigenin showed 4-16 times higher antimicrobial activity than rhapontin. The activity was higher against Gram-positive strains than Gram-negative strains. Minimum inhibitory concentrations (MICs) of rhapontigenin, retinol, and five antibiotics were determined by the microbroth dilution method for antibiotic-sensitive and -resistant Propionibacterium acnes. We also investigated the in vitro antibacterial activity of rhapontigenin in combination with antibiotic against antibiotic-resistant P. acnes. The antibiotic combination effect against resistant P. acnes was studied by the checkerboard method. The combination formulations (rhapontigenin and clindamycin, retinol and clindamycin) showed synergistic effects on the inhibition of the growth of clindamycin-resistant P. acnes. It is predictable that the combination of antibiotics with rhapontigenin is helpful to treat acne caused by antibiotic-resistant P. acnes. The antibacterial activity of rhapontigenin was enhanced by biotransformation.

Keywords

References

  1. Belofsky, G., R. Carreno, K. Lewis, A. Ball, G. Casadei, and G. P. Tegos. 2006. Metabolites of the "Smoke tree", Dalea spinosa, potentiate antibiotic activity against multidrug-resistant Staphylococcus aureus. J. Nat. Prod. 69: 261-264. https://doi.org/10.1021/np058057s
  2. Chabot, S., R. Bel-Rhlid, R. Chenevert, and Y. Piche. 1992. Hyphal growth in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoids compounds under $CO_2$-enriched conditions. New Phytol. 122: 461-467. https://doi.org/10.1111/j.1469-8137.1992.tb00074.x
  3. Chivot, M. 2005. Retinoid therapy for acne. Am. J. Clin. Dermatol. 6: 13-19. https://doi.org/10.2165/00128071-200506010-00002
  4. Coates, P., S. Vyakrnam, E. A. Eady, C. E. Jones, J. H. Cove, and W. J. Cunliffe. 2002. Prevalence of antibiotic-resistant propionibacteria on the skin of acne patients: 10-Year surveillance data and snapshot distribution study. Br. J. Dermatol. 146: 840-848. https://doi.org/10.1046/j.1365-2133.2002.04690.x
  5. Davidson, P. M. and A. L. Branen. 1981. Antimicrobial activity of non-halogenated phenolic compounds. J. Food Prot. 44: 623-632.
  6. de Leon, L. and L. Moujir. 2008. Activity and mechanism of the action of zeylasterone against Bacillus subtilis. J. Appl. Microbiol. 104: 1266-1274. https://doi.org/10.1111/j.1365-2672.2007.03663.x
  7. Devi, K. P., N. Suqanthy, P. Kesika, and S. K. Pandian. 2008. Bioprotective properties of seaweeds: In vitro evaluation of antioxidant activity and antimicrobial activity against food borne bacteria in relation to polyphenolic content. BMC Complement. Altern. Med. 8: 38-48. https://doi.org/10.1186/1472-6882-8-38
  8. Estevinho, L., A. P. Pereira, L. Moreira, L. G. Dias, and E. Pereira. 2008. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol. 46: 3774-3779. https://doi.org/10.1016/j.fct.2008.09.062
  9. Jeon, M., K. Lee, Y. H. Lim, and J. K. Kim. 2009. Rhapontigenin production by bioconversion and inhibition of melanin synthesis. Kor. J. Microbiol. Biotechnol. 37: 49-54.
  10. Kageura, T., H. Matsuda, T. Morikawa, I. Toguchida, S. Harima, M. Oda, and M. Yoshikawa. 2001. Inhibitors from Rhubarb on lipopolysaccharide-induced nitric oxide production in macrophages: Structural requirements of stilbenes for the activity. Bioorg. Med. Chem. 9: 1887-1893. https://doi.org/10.1016/S0968-0896(01)00093-1
  11. Kim, D. H., E. K. Park, E. A. Bae, and M. J. Han. 2000. Metabolism of rhaponticin and chrysophanol 8-O-beta-$_D$-glucopyranoside from the rhizome of Rheum undulatum by human intestinal bacteria and their anti-allergic actions. Biol. Pharm. Bull. 23: 830-833. https://doi.org/10.1248/bpb.23.830
  12. Kubo, I., K. I. Fujita, K. I. Nihei, and A. Nihei. 2004. Antibacterial activity of alkyl gallates against Bacillus subtilis. J. Agric. Food Chem. 52: 1072-1076. https://doi.org/10.1021/jf034774l
  13. Liederer, B. M. and R. T. Borchardt. 2006. Enzymes involved in the bioconversion of ester-based prodrugs. J. Pharm. Sci. 95: 1177-1195. https://doi.org/10.1002/jps.20542
  14. Marotti, I., A. Bonetti, B. Biavati, P. Catizone, and G. Dinelli. 2007. Biotransformation of common bean (Phaseolus vulgaris L.) flavonoid glycosides by Bifidobacterium species from human intestinal origin. J. Agric. Food Chem. 55: 3913-3919. https://doi.org/10.1021/jf062997g
  15. Matsuda, H., T. Morikawa, I. Toguchida, J. Y. Park, S. Harima, and M. Yoshikawa. 2001. Antioxidant constituents from Rhubarb: Structural requirements of stilbenes for the activity and structures of two new anthraquinone glucosides. Bioorg. Med. Chem. 9: 41-50. https://doi.org/10.1016/S0968-0896(00)00215-7
  16. Mori, A., C. Nishino, N. Enoki, and S. Tawata. 1987. Antibacterial activity and mode of action of plant flavonoids against Proteus vulgaris and Staphylococcus aureus. Phytochemistry 26: 2231-2234. https://doi.org/10.1016/S0031-9422(00)84689-0
  17. National Committee for Clinical Laboratory Standards. 1997. Methods for antimicrobial susceptibility testing of anaerobic bacteria: Tentative Standard M11-A4. National Committee for Clinical Laboratory Standards, Villanova.
  18. Nielsen, I. L., W. S. Chee, L. Poulsen, E. Offord-Cavin, S. E. Rasmussen, H. Frederiksen, et al. 2006. Bioavailability is improved by enzymatic modification of the citrus flavonoid hesperidin in humans: A randomized, double-blind, crossover trial. J. Nutr. 136: 404-408.
  19. Oprica, C. and C. E. Nord. 2005. European surveillance study on the antibiotic susceptibility of Propionibacterium acnes. Clin. Microbiol. Infect. 11: 204-213. https://doi.org/10.1111/j.1469-0691.2004.01055.x
  20. Otieno, D. O. and N. P. Shah. 2007. A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous ${\beta}$-glucosidases. J. Appl. Microbiol. 103: 601-612. https://doi.org/10.1111/j.1365-2672.2006.03245.x
  21. Park, E. K., M. K. Choo, H. K. Yoon, and D. H. Kim. 2002. Antithrombotic and antiallergic activities of rhaponticin from Rhei Rhizoma are activated by human intestinal bacteria. Arch. Pharm. Res. 25: 528-533. https://doi.org/10.1007/BF02976613
  22. Pechere, M., L. Germanier, G. Siegenthaler, J. C. Pechere, and J. H. Saurat. 2002. The antibacterial activity of topical retinoids: The case of retinaldehyde. Dermatology 205: 153-158. https://doi.org/10.1159/000063903
  23. Pereira, J. A., A. P. Pereira, I. C. Ferreira, P. Valentao, P. B. Andrade, R. Seabra, L. Estevinho, and A. Bento. 2006. Table olives from Portugal: Phenolic compounds, antioxidant potential, and antimicrobial activity. J. Agric. Food Chem. 54: 8425-8431. https://doi.org/10.1021/jf061769j
  24. Pillai, S. K., R. C. Moellering, and G. M. Eliopoulos. 2005. Antimicrobial combinations, pp. 365-440. In V. Lorian (ed.). Antibiotics in Laboratory Medicine. Lippincott Williams & Wilkins, PA, U.S.A.
  25. Puupponen-Pimia, R., L. Nohynek, H. L. Alakomi, and K. M. Oksman-Caldentey. 2005. Bioactive berry compounds - novel tools against human pathogens. Appl. Microbiol. Biotechnol. 67: 8-18. https://doi.org/10.1007/s00253-004-1817-x
  26. Puupponen-Pimia, R., L. Nohynek, S. Ammann, K. M. Oksman-Caldentey, and J. Buchert. 2008. Enzyme-assisted processing increases antimicrobial and antioxidant activity of bilberry. J. Agric. Food Chem. 56: 681-688. https://doi.org/10.1021/jf072001h
  27. Racchach, M. 1984. The antimicrobial activity of phenolic antioxidants in foods: A review. J. Food Safety 6: 141-170. https://doi.org/10.1111/j.1745-4565.1984.tb00479.x
  28. Rauha, J. P., S. Remes, M. Heinonen, A. Hopia, M. Kahkonen, T. Kujala, K. Pihlaja, H. Vuorela, and P. Vuorela. 2000. Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int. J. Food Microbiol. 56: 3-12. https://doi.org/10.1016/S0168-1605(00)00218-X
  29. Roupe, K. A., G. L. Helms, S. C. Halls, J. A. Yanez, and N. M. Davies. 2005. Preparative enzymatic synthesis and HPLC analysis of rhapontigenin: Applications to metabolism, pharmacokinetics and anti-cancer studies. J. Pharm. Pharm. Sci. 8: 374-386.
  30. Sobieszczyk, M. E., E. Y. Furuya, C. M. Hay, P. Pancholi, P. Della-Latta, S. M. Hammer, and C. J. Kubin. 2004. Combination therapy with polymyxin B for the treatment of multidrug-resistant Gram-negative respiratory tract infections. J. Antimicrob. Chemother. 54: 566-569. https://doi.org/10.1093/jac/dkh369
  31. Tsuchiya, H., M. Sato, T. Miyazaki, S. Fujiwara, S. Tanigaki, M. Ohyama, T. Tanaka, and M. Iinuma. 1996. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 50: 27-34. https://doi.org/10.1016/0378-8741(96)85514-0
  32. Vowels, B. R., S. Yang, and L. L. Leyden. 1995. Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: Implications for chronic inflammatory acne. Infect. Immun. 63: 3158-3165.
  33. Zhang, R., K. A. Kang, M. J. Piao, K. H. Lee, H. S. Jang, M. J. Park, et al. 2007. Rhapontigenin from Rheum undulatum protects against oxidative stress-induced cell damage through antioxidant activity. J. Toxicol. Environ. Health A 70: 1155-1166. https://doi.org/10.1080/15287390701252766

Cited by

  1. Rhapontigenin Inhibited Hypoxia Inducible Factor 1 Alpha Accumulation and Angiogenesis in Hypoxic PC-3 Prostate Cancer Cells vol.34, pp.6, 2011, https://doi.org/10.1248/bpb.34.850
  2. The possible mechanism of rhapontigenin influencing antifungal activity on Candida albicans vol.51, pp.1, 2013, https://doi.org/10.3109/13693786.2012.689021
  3. Deglycosylation of Stilbene Glucoside Compounds Improves Inhibition of 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase and Squalene Synthase Activities vol.23, pp.2, 2010, https://doi.org/10.1007/s10068-014-0088-2
  4. High-frequency underwater plasma discharge application in antibacterial activity vol.43, pp.3, 2010, https://doi.org/10.1134/s1063780x17030011
  5. Antimicrobial Effects of Chemical Compounds Isolated from Traditional Chinese Herbal Medicine (TCHM) Against Drug-Resistant Bacteria: A Review Paper vol.19, pp.2, 2019, https://doi.org/10.2174/1389557518666181017143141
  6. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models vol.10, pp.None, 2010, https://doi.org/10.3389/fmicb.2019.00829
  7. Biotransformation of Naringenin by Bacillus amyloliquefaciens Into Three Naringenin Derivatives vol.14, pp.5, 2010, https://doi.org/10.1177/1934578x19851971
  8. Efficient biosynthesis, analysis, solubility and anti-bacterial activities of succinylglycosylated naringenin vol.33, pp.12, 2010, https://doi.org/10.1080/14786419.2018.1431633
  9. 장변대황(Rheum australe D. Don)으로부터 분리된 토마토 시들음병원균(Fusarium oxysporum f. sp. lycopersici (Saccardo) Snyder & Hansen)에 대한 항진균 활성물질 구명 vol.28, pp.1, 2010, https://doi.org/10.11625/kjoa.2020.28.1.95
  10. Antibacterial activity of noscapine analogs vol.43, pp.None, 2010, https://doi.org/10.1016/j.bmcl.2021.128055
  11. Identification of the metabolites of rhapontigenin in rat and human by ultra‐high‐performance liquid chromatography—high‐resolution mass spectrometry vol.35, pp.20, 2010, https://doi.org/10.1002/rcm.9180
  12. Development of Hinoline® as a natural preservative for cosmetic product using bioinspiration and Greenpharma Database vol.131, pp.6, 2010, https://doi.org/10.1111/jam.15139