A Study on the Synthesis of Starch-Acrylic Polymer by Emulsion Polymerization

유화중합에 의한 전분-아크릴 고분자의 합성에 관한 연구

  • Lee, Mi-Suk (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Ryu, Hoon (Samyang Group Food R&D Center) ;
  • Cho, Ur-Ryong (Department of Applied Chemical Engineering, Korea University of Technology and Education)
  • 이미숙 (한국기술교육대학교 응용화학공학과) ;
  • 류훈 (삼양그룹 식품연구소) ;
  • 조을륭 (한국기술교육대학교 응용화학공학과)
  • Published : 2010.01.25

Abstract

The acrylic monomers were graft-polymerized to starch as matrix polymer by emulsion polymerization. Viscosity and particle size of the emulsion were increased with starch contents due to interaction with water and particle swelling toward the water phase by hydroxy group of starch. Chemical stability of the emulsion was also increased with enhancement of starch, but water and alkali resistance were reduced with increasing starch contents because of the increasement of hyrophilicity. Opacity of the starch-acrylic emulsion compound containing calcium carbonate was decreased with contents of starch by its intrinsic color. The film of starch-acrylic polymer showed more clear appearance with increasing starch contents owing to enhancement of amorphous state.

전분을 매트릭스 고분자로 하여 아크릴 단량체를 유화중합 방법으로 그래프트 중합하였다. 에멀젼의 점도와 입자경은 전분 함량이 증가함에 따라 전분의 히드록시기가 물과 상호작용하고 고분자 입자가 분산매인 물 쪽으로 팽윤함으로 인해 증가하였다. 에멀젼의 화학적 안정성은 전분 함량이 증가할수록 양호하였으나 내수성과 내알칼리성은 전분 함량이 증가할수록 친수성이 증가하면서 감소하였다. 탄산칼슘을 포함한 전분-아크릴 에멀젼 배합물의 불투명도는 전분의 함광이 증가함에 따라 전분 고유의 색깔에 의해 감소하였고 도막의 상태는 전분의 함량이 증가함에 따라 도막의 무정형 상태가 증가하면서 균열이 없는 매끈한 외관을 나타내었다.

Keywords

References

  1. J. H. Hwang, H. Ryu, and U. R. Cho, Elastomer, 43, 221 (2008) .
  2. Nguyen et al., U.S. Patent 5,003,022 (1991)
  3. Floyd et al., U.S. Patent 5,116,890 (1992).
  4. Hurley et al., U.S. Patent 6,090,884 (2000).
  5. Luebke et al., U.S. Patent 6,040,379 (2000)
  6. G. Odian, Principles of Polymerization, 3rd Ed., Wileyinterscience, New York, 1991.
  7. P. J. Flory, Principles of Polymer Chemistry, 13th Ed., Cornell Univ. Press, New York, 1986.
  8. J. H. Song, S. J. Park, M. C. Lee, and J. C. Lim, J. Korean Ind Eng. Chem., 10, 523 (1999).
  9. J. W. Goodwin, J. Hearn, C. C. Ho, and R. H. Ottwill, Colloid Polym. Sci. 252, 464 (1974). https://doi.org/10.1007/BF01554752
  10. C. K. Ober and H. L. Hair, J. Polym. Sci., Polym. Chem. Ed. 25, 1395 (1987) https://doi.org/10.1002/pola.1987.080250516
  11. K. P. Lok and C. K. Ober, Can. J. Chem., 63, 209 (1985). https://doi.org/10.1139/v85-033
  12. C. Liu, Y. Shao, and D. Jia, Polymer 49, 2176 (2008). https://doi.org/10.1016/j.polymer.2008.03.005
  13. Y.-P. Wu, M.-Q. Ji, Q. Qi, Y.-Q. Wang, and L.-Q. Zhang, Macromol. Rapid Commun., 25, 565 (2004). https://doi.org/10.1002/marc.200300125