Application of a Non-Hydrostatic Pressure Model with Dynamic Boundary Condition to Free Surface Flow

동역학적 경계조건을 갖는 동수압 모형의 자유수면흐름에의 적용

  • 이진우 (한양대학교 일반대학원 건설환경공학과) ;
  • 정우창 (경남대학교 공과대학 토목공학과) ;
  • 조용식 (한양대학교 공과대학 건설환경공학과)
  • Published : 2010.02.28

Abstract

In this study, a three-dimensional non-hydrostatic pressure model based on a normalized vertical coordinate system for free surface flows is presented. To strongly couple the free surface and non-hydrostatic pressure with the momentum equations, a double predictor-corrector method is employed. The study is especially focused on implementing the dynamic boundary condition (a zero pressure condition) at the free surface with ignoring of the atmospheric pressure. It is shown that the boundary condition can be specified easily with a slight modification to existing models.

본 연구에서는 자유수면 흐름에 적용할 수 있는 연직방향에 대해 좌표변환된 3차원 동수압 모형을 제시하였다. 제시한 모형은 자유수면과 동수압의 해석을 위하여, 2중 예측-수정(double predictor-corrector)방법을 적용하였다. 본 연구에서는 정확한 동역학적 경계조건(자유수면에서의 압력은 0인 조건)을 적용하는 방법을 검토하였고, 제시한 모형을 이용한 수치모의 결과를 해석해와 비교하여 본 연구에서 제시한 모형의 우수성을 검증하였다.

Keywords

References

  1. 이종욱, 이진우, 조용식 (2008) 동수압 모형의 동역학적 경계조건, 대한토목학회논문집, 제28권, 제6B호, pp. 691–696.
  2. 정태화, 김형준, 조용식 (2009) 3차원 함몰지형에서 소멸파 성분의 영향, 한국수자원학회논문집, 제42권, 제12호, pp. 1125-1133. https://doi.org/10.3741/JKWRA.2009.42.12.1125
  3. Beji, S. and Battjes, J.A. (1993) "Experimental investigation of wave propagation over a bar", Coastal Eng. Vol. 19, pp. 151-162. https://doi.org/10.1016/0378-3839(93)90022-Z
  4. Bender, C.J. and Dean, R.G. (2005) "Wave transformation by axisymmetric three-dimensional bathymetric anomalies with gradual transitions in depth", Coastal Eng. Vol. 53, pp. 331-351.
  5. Casulli, V. (1999) A semi-implicit finite difference method for nonhydrostatic, free-surface flows, Int. J. Numer. Meth. Fluids. Vol. 30, pp. 425-440. https://doi.org/10.1002/(SICI)1097-0363(19990630)30:4<425::AID-FLD847>3.0.CO;2-D
  6. Casulli, V. and Cattani, E. (1994) Stability, accuracy and efficiency of a semi-implicit method fro three-dimensional shallow water flow, Comput. Math. Appl. Vol. 27, No. 4, pp. 99-112. https://doi.org/10.1016/0898-1221(94)90059-0
  7. Casulli, V. and Zanolli, P. (2002) Semi-implicit numerical modelling of nonhydrostatic free-surface flows for environmental problems, Math. Comp. Modeling. Vol. 36, No. 9-10, pp. 1131-1149 https://doi.org/10.1016/S0895-7177(02)00264-9
  8. Phillips, N.A. (1957) A coordinate system having some special advantages or numerical forecasting. J. Meteor. Vol. 4, pp. 184-185.
  9. Saad, Y. (1992) Numerical methods for large eigenvalue problems (Algorithms and architectures for advanced scientific computing), John Wiley and Sons Inc..
  10. Shi, J. and Toro, E.F. (1996) Fully discrete high-order shock-capturing numerical schemes, Int. J. Numer. Meth. Fluids. Vol. 23, pp. 241-269. https://doi.org/10.1002/(SICI)1097-0363(19960815)23:3<241::AID-FLD421>3.0.CO;2-L
  11. Stelling, G.S. and Zijlema, M. (2003) An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation, Int. J. Numer. Meth. Fluids. Vol. 43, pp. 1-23. https://doi.org/10.1002/fld.595
  12. Van der Vorst, H.A. (1992) BI-CGSTAB: A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. Vol. 13, pp. 631-644. https://doi.org/10.1137/0913035
  13. Yuan, H. and Wu, C.H. (2004) An implicit three-dimensional fully non-hydrostatic model for free-surface flows, Int. J. Numer. Meth. Fluids. Vol. 46, pp. 709-733. https://doi.org/10.1002/fld.778