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Abstract

This paper presents a high-performance architecture of integer-pel motion estimation circuit for H264 video CODEC.
Full search algorithm guarantees the best results by examining all candidate blocks. However, the full search algorithm
requires a huge amount of computation and data. Many fast search algorithms have been proposed to reduce the
computational efforts, The disadvantage of these algorithms is that data access from or to memory is very irregular and
data reuse is difficult. In this paper, we propose an efficient integer-pixel motion estimation algorithm and the circuit
architecture to improve the processing speed and reduce the external memory bandwidth. The proposed circuit supports
seven kinds of varable block sizes and generates 41 motion vectors. We described the proposed high-performance motion
estimation circuit at RTL and verified its operation on FPGA board. The circuit synthesized by using 130nm CMOS
standard cell library processes 139.8 1080HD (1,920x1,088) image frames per second and supports up to H264 level 5.1
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resolution gets higher and higher, the amount of
computation and power consumption required for ME
increases dramatically. A variety of BME algorithms
have been proposed as a solution. Full search (FS)
algorithm guarantees the best results by examining
all candidate blocks. However, the usage of FS
algorithm is limited because it requires a huge
amount of computation and data. Many fast search
algorithms such as three-step search[4], four-step
Search[S], hierarchical search® and diamond search!”
have been proposed to reduce the computational
efforts. The disadvantage of these algorithms is that
data access from or to memory is very irregular and
data reuse is difficult. Therefore it is not easy to
apply these algorithms in the hardware platform
using external memories, eg., synchronous dynamic
random access memory (SDRAM) as frame buffers.
This paper proposes a high-performance integer-
pel ME algorithm and circuit architecture that can
the bandwidth of external

memories. The proposed algorithm consists of coarse

reduce requirement
and fine searches. In the coarse search, the mean
values of 16 pixels in the 4x4 reference block and
current block are computed and the FS is performed
using those mean values. In addition, four previously
(MV’s)
mprove the quality of the coarse search. In the fine
search, the FS is performed for the search range of
+3 around the motion vector (MV) obtained from the
coarse search. The irregularity of data access is
greatly reduced in the proposed algorithm compared
to the conventional hierarchical search. We devised
the high-performance circuit architecture for the
proposed algorithm and described the circuit at
register-transfer level (RTL). The circuit synthesized
by using 130nm CMOS standard cell library can
process 139.8 1080HD (1,920x1,038) image frames per
second and hence support up to H.264 level 5.1.

determined motion vectors are used to

. Proposed Integer—pel ME Algorithm

In this section, we describe an algorithm to
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perform the ME efficiently for HD video by reducing
the irregularity of the data access. The proposed
algorithm consists of two steps - coarse step search

and fine step search.

1. Coarse Step ME

We propose an enhanced algorithm to improve the
quality of the coarse search as shown in Fig. 1. The
mean values of 16 pixels in the 4x4 reference block
and current block are computed to construct a coarse
block shown as Fig. 2. Since the coarse block area is
1/16 of original one, the amount of data and the
number of clock cycles required to compute the sum
of absolute differences (SAD) are reduced into 1/16.

Five MV's (MVuing ~ MVyina) are computed using
coarse blocks on the completion of (b). MViino
smallest SAD and MV

corresponds to the next smallest SAD and so on. In

corresponds to the

our algorithm, we compute MVies, expected MV of
the current macroblock (MB), by using previously
determined MV’s in the neighbor in order to speed

Mean value calculation
for macroblock

v

SAD calculation for
search area

Calculation of DIFF_ NUM,
num mv_cross,
num_pred_cross

-(d

DIFF_NUM!=4 &&

-(®)

a2l 1. Coarse step 22¢ o F 2U2lE
Fig. 1. Algorithm of coarse step motion estimation.
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up the computation process of MV. MV is
computed by (1) where MVa~MVp are the
previously determined MV's as shown in Fig. 3. If
the condition in (¢) is not satisfied, the final MV
(MV5ew) is determined as MV Otherwise, the
distribution characteristics of MVyea and MViuo~
MVyine are examined as specified in (d) and (e).
DIFF_NUM is the number of MV's in region 1
(center: MVuino) of Fig. 4. num_mv_cross is the
number of MV’s in region 2 (center: MV and
nurn_pred_cross is the number of MV’s in region 3

<
&3
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Cross.
(center: MVuea) of Fig. 5. MVyew can be either

MViing or MV g depending on the condition (e).

MVea = (2 MVa+ MVs+2 MVc+MVp+3)/6
(1

2. Fine Step ME

The MV obtained by the coarse ME has the
precision of four pixels and we need to perform one
more ME with the precision of one pixel. In the fine
ME, the FS is performed for the search range of *3
around the MV obtained from the coarse ME. Fig. 6
compares the rate distortion (RD) curves of five
algorithms: FS, unsymmetrical cross multi~hexagon-
grid-search (UMHS), enhanced predictive zonal
search (EPZS), proposed algorithm without using
MVyed and proposed algorithm with using MViea. In
this figure, FS, EPZS, UMHS, and 'Proposed with
MVyed are indistinguishable becanse they have
almost the same values.

Table 1 shows the results in detail. In the
experiments, the proposed algorithms use the coarse
step search and then fine step search. The 1080HD
test sequence (‘Blue sky’) consists of one intra (I)
frame and 99 predict (P) frames. JM 14.0% is used in
the experiment and the value of quantization
parameter (QP) is set to 5, 15, 28, 38 and 48. The
search range is *16 and the number of reference
frame is one. As shown in Fig. 6 and Table 1, the
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Table 1. Performance comparison of various ME
algorithms..
QP 48 38 28 15 5
A Bit rate (%)
S 0.000 0000 0.000 0.000 0.000
EPZS 0025 0012 0004  -0002  -0.006
UMHS 0027 0042 0002 0014 0009
without
1449 2942 2672 0.563 0.140
MVipred
with MVpred 0082  003% 0.004 0009 0007
& PSNR (dB)
FS 0.00 0.00 0.00 0.00 0.00
EPZS 0.18 0.07 -0.01 -0.05 -0.02
UMHS ~0.06  -0.10 -0.07 -0.06 -0.03
without
-090 0% -0.87 -0.23 -0.06
MVpred
with MVpred 0.11 0.03 -0.05 -0.06 -0.02

performance of the proposed algorithm with using
MV e 1s almost the same as the previous algorithms
inchuding FS. In Table 1, the positive bit rate
represents the smaller cempressidn ratio compared to
FS and the positive PSNR represents the better
image quality compared to FS. We obtained the
Fig. 7
compares the bandwidth requirements of external
H264 encoder. The bandwidth
requirements are calculated for one MB in one

similar results for other test sequences.

memory for the
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algorithms.

reference frame. In this comparison, 'Other

Approaches’ include FS and various fast search
methods. We assumed that all the data in the search
range are read from the external memory in the fast
search methods because they require random access
of the data. The bandwidth requirement of our
algorithm for the search range of £32 is only 20.04%
of others (1,412bytes vs. 6912bytes).

II. Proposed Circuit Architecture

Fig. 8 shows the architecture of the proposed
circuit to implement the coarse and fine step ME's. It
of SAD Calculator, SAD Comparator,
Predicion MV Calculator, current register buffer
(CRB), reference register buffer (RRB), Mean
Calculator, 14 single-port SRAM's (SPSRAM),
SRAM Controller and Motion Estimation Controller.
The reference data from external memory are stored
in four 22x32-bit SPSRAM’s (By ~ Bg) and six
8x32-bit SPSRAM’s (Bs ~ Bo). The data read from
SRAM's are stored in RRB shown in Fig. 9. RRB
receives four 32-bit inputs (Ip —~ Is) simultaneously.

consists

Motion Estimation Controller determines which group
(Group A, B or C) should be used as inputs of RRB.
The reference data move around by 4 for coarse
step ME and %3 for fine step ME to gather 256 data
and transfer them to SAD Calculator. CRB receives
data from four 16x32-bit SPSRAM's (Biy ~ Bu).
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Number of Cycle
0 a-1 o a+15
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p=8 :0= 8 cycles
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p=32:0=16cycles

(a} Coarse step motion estimation (p: search range)
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A 4

Big, Bus, |«
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Fig. 10. Timing diagram of proposed motion estimation.

SAD Comparator determines the minimum SAD
and 41 MV’s. Prediction MV Calculator computes
MVyea for coarse step ME. The mean values of
current data are computed by Mean Calculator and
stored in four buffers (Biy ~ Bis). The reconstructed
data are obtained by the motion compensation and
inverse discrete cosine transform (IDCT). The mean
values of reconstructed data are computed by Mean
Calculator. Both of the reconstructed data and their
mean values are stored in the external memory for
the ME of the next frame.

Fig. 10 shows the timing diagram of each ME.
The coarse step ME requires 12 cycles for receiving
data and 16 cycles for SAD computation. The fine
step ME requires 16 cycles for storing data in CRB,
34 cycles for storing data in RRB, and 50 cycles for
SAD computation. Note that the above discussion
assumes that the search range is +16.

IV. Implementation Results

We designed the circuit at RTL using Verilog. The
circuit synthesized by using 130nm CMOS standard
cell library consists of 133,153 gates and has the
maximum operating frequency of 101.5MHz. Table 2
and Table 3 show the comparison results with other
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Table 2. Comparison of synthesis results.
Area x;:;s freiiz;cy Process Search
(K gates) (bits) (MHz) (nm) method
[9 108 0 100 130 FS
{10] 105 0 100 250 FS
{1 154 24K 100 180 FS
{12 597 20 180 FS
{13] 71 18K 150 250 FS
{14] 123 0 200 180 FS
{15] 210 62K 260 180 FS
(16] 175 18K 1877 130 FS
17 305 110K 108 180 Fast
{18] 131 64K 6 180 Four step
(19 180 45K 100 130 Fast
Qurs 133 107K 1015 130 Fast
E 3 OE 7x9e Mz sin

Table 3. Performance comparison with other approaches.

# ?f Clock cycles B'aerdWidth thrr:;iput
PE’s (Cycles/MB) {Khits/MB} (fps@10R0HD)

{9} 16 4,49% 1079 21

[10] 256 296 3789 414

{11] 256 26 3276 479

{12] 256 256 2457 ®B.7

{13] 16 4,496 611.46 40

i14] 266 26 6.14 BT

{15] 256 5216 - 29

[16] 31 5924 - 19

17] 128x8 - 268 132

18] - 15

(191 5924 134 300

Ours 256 89 438 139.8

approaches. In these tables, we set the search range
to 8 in order to compare the results in the same
condition. As shown in these tables, the number of
gates and the maximum operating frequency are
comparable to other circuits. Our ME circuit shows

an outstanding to other

throughput compared
approaches. It also requires smaller memory and
smaller bandwidth per MB compared to previous fast
search methods. If the search range is 8 our circuit
requires 89 cycles per MB and the required
bandwidth is 4.38Kbits/MB, which is a significant
improvement compared to others. It can process 60

1080HD image frames per second with 455MHz
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clock. If the search range is +32, our circuit requires
97 cycles per MB and the required bandwidth is
707Kbits/MB. The operating frequency required to
process 30 CIF (352x283) image frames per second
for the search range of +16 is 1.1MHz,
v.d g

This paper proposes an efficlent ME algorithm and
the circuit architecture to achieve high speed and low
memory bandwidth. By substituting 16 pixels in 4x4
blocks by one mean value during coarse search and
considering only the search range of £3 during fine
search, we reduced the amount of data and the
number of clock cycles significantly. By using 256
PE’s, the resultant circuit processes 139.8 1080HD
image frames per second at the operating frequency
of 101.5MHz. The proposed method is suitable for the
high-quality video compression supporting multiple
reference frames and for the low-power video
applications such as portable handset devices.
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