Isolation of a Calcium-Binding Fraction from a Hot-Water Extract of Smilax rhizoma

청미래덩굴 뿌리 열수 추출물로부터 칼슘 결합 물질의 분리

  • Lee, Ji-Hye (Department of Food Science & Technology, Chungnam National University) ;
  • Jeon, So-Jeong (Department of Food Science & Technology, Chungnam National University) ;
  • Song, Kyung-Bin (Department of Food Science & Technology, Chungnam National University)
  • 이지혜 (충남대학교 농업생명과학대학 식품공학과) ;
  • 전소정 (충남대학교 농업생명과학대학 식품공학과) ;
  • 송경빈 (충남대학교 농업생명과학대학 식품공학과)
  • Received : 2010.07.22
  • Accepted : 2010.12.03
  • Published : 2010.12.30

Abstract

We isolated a calcium-binding substance from Smilacis rhizoma hot-water extract using ion exchange, normal phase HPLC, and gel filtration chromatography; fractions were analyzed for calcium-binding activity. Fractions (F6) with the highest calcium-binding activity from the resource Q coulmn were pooled and further purified on an $NH_2$ column. Two major peaks were separated and the fraction (F61) with the higher calcium-binding activity was then loaded onto a $Superdex^{TM}$ column. A single peak (F611) with calcium-binding activity was finally obtained. These results suggest that the isolated calcium-binding fraction could be used as a functional food additive, similar to a calcium supplement, in the food industry.

청미래덩굴 뿌리(Smilacis rhizoma)로부터 칼슘과 결합하는 물질을 분리하고자 열수로 추출한 추출물을 ion exchange, normal-phase HPLC 및 gel filtration chromatogarphy를 이용하여 칼슘 결합 물질을 순차적으로 분리하였다. 그 결과 ion exchange chromatography에서 7개의 major peaks를 얻었으며, 이 중 F6 fraction이 0.083 mM로 칼슘과 가장 높은 결합력을 가졌다. 또한 F6를 $NH_2$ column으로 분획한 결과 F61에서 0.130 mM의 가장 높은 칼슘함량을 나타내었으며, 최종적으로 $Superdex^{TM}$를 이용하여 F611 fraction으로 분리하였다. 따라서 청미래덩굴 뿌리 추출물 중 F611 fraction을 이용하여 biomineral을 제조함으로써 칼슘 보충제나 기능성 성분의 원료로써 식품산업에 활용될 수 있다고 판단된다.

Keywords

References

  1. Chu KT, Ng TB. (2006) Smilaxin, a novel protein with immunosimulatory, antiproliferative, and HIV-1-reverse transcriptase inhibitory activities from fresh Smilax glabra rhizomes. Biochem. Biophys. Res. Com., 340, 118-124 https://doi.org/10.1016/j.bbrc.2005.12.010
  2. Korea Food and Drug Administration. (2008) Standard Manufacturing Manual for Korean Traditional Herbal Medicine (I), Seoul, Korea, p.85
  3. Song HS, Park YH, Jung SH, Kim DP, Jung YH, Lee MK, Moon KY. (2006) Antioxidant activity of extracts from Smilax china roots. J. Korean Soc. Food Sci. Nutr., 35, 1133-1138 https://doi.org/10.3746/jkfn.2006.35.9.1133
  4. Song JH, Kwon HD, Lee WK, Park IH. (1998) Antimicrobial activity and compoition of extract from Smilax china roots. J. Korean Soc. Food Sci. Nutr., 27, 574-584.
  5. Ng TB, Yu YL. (2001) Isolation of a novel heterodimeric agglutinin from rhizomes of Smilax glabra, the Chinese medicinal material tufuling. Int. J. Biochem. Cell. Biol., 33, 269-277 https://doi.org/10.1016/S1357-2725(01)00004-8
  6. Xia D, Yu X, Liao S, Shao Q, Mou H, Ma W. (2010) Protective effect of Smilax glabra extract against lead-induced oxidative stress in rats. J. Ethnopharmcol., 130, 414-420 https://doi.org/10.1016/j.jep.2010.05.025
  7. Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Huang YP, Liu YW, Liu JW. (2007) A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J. Ethnopharmcol., 113, 115-124 https://doi.org/10.1016/j.jep.2007.05.016
  8. Xu W, Liu J, Li C, Wu HZ, Liu YW. (2008) Kaempferol-7-O-$\beta$-D-glucoside (KG) isolated from Smilax china L. rhizome induces G2/M phase arrest and apoptosis on HeLa cells in a p53-independent manner. Cancer Lett, 264, 229-240 https://doi.org/10.1016/j.canlet.2008.01.044
  9. Wu LS, Wang XJ, Wang H, Yang HW, Jia AQ, Ding Q. (2010) Cytotoxic polyphenols against breast tumor cell in Smilax china L. J. Ethnopharmcol., 130, 460-464 https://doi.org/10.1016/j.jep.2010.05.032
  10. Lee IB. (2004) The Study on the Removal Effect of Heavy Metals by Smilax china Rhizome Diet. MS thesis, Dongeui University, Korea
  11. Lee CH. (2008) Anti-oxidative and Anti-inflammatory Effect of Fractionated Extracts of Smilacis Glavrae Rhizoma in Human Umbilical Vein Endothelial Cell. Ph.D thesis, Dungguk University, Korea
  12. The Korean Nutrition Society. (2010) Dietary reference intakes for Korean, Seoul, Korea
  13. Lee SH, Chang SO. (1994) Comparison of the bioavailability of calcium from anchovy, tofu and nonfat dry milk (NFDM) in growing male rats. Korean J. Nurt., 27, 473-482
  14. Choi YM, Lee JH, Han JS. (2009) Effect of vitamin D and calcium intervention on the improvement of resistance in patients with type 2 diabetes mellitus. Korean Diabet. J., 33, 324-334 https://doi.org/10.4093/kdj.2009.33.4.324
  15. Davies KM, Heaney RP, Recker RR, Lappe JM, Barger-Lux MJ, Rafferty K, Hinders S. (2000) Calcium intake body weight. J. Clin. Endocrinol. Metab., 85, 4635-4638 https://doi.org/10.1210/jc.85.12.4635
  16. Zemel MB, Thompson W, Milstead A, Morris K, Campbell P. (2004) Calcium and dairy acceleration of weight and fat loss during energy restriction in obese adults. Obes. Res., 12, 582-590 https://doi.org/10.1038/oby.2004.67
  17. Han JH, Kim EM, Cheong MK, Chee SK, Chee KM. (2010) Bioavailability and digestibility of organic calcium sources by bone health Index. Korean J. Nutr., 43, 12-25 https://doi.org/10.4163/kjn.2010.43.1.12
  18. Jeon SJ, Lee JH, Song KB. (2010) Preparation for calcium and iron-binding peptides from rice bran protein hydrolysates. J. Appl. Biol. Chem., 53, 174-178 https://doi.org/10.3839/jabc.2010.031
  19. Lee SH, Song KB. (2009) Isolation of a calcium-binding peptide from enzymatic hydrolysates of porcine blood plasma protein. J. Korean Soc. Appl. Biol. Chem., 52, 290-294 https://doi.org/10.3839/jksabc.2009.051
  20. Gitelman HJ. (1967) An improved automated procedure for the determination of calcium in biological specimens. Anal. Biochem., 18, 521-531 https://doi.org/10.1016/0003-2697(67)90110-8
  21. Kim SY, Chung MA, Song DU, Shin JH, Chay KO, Jung YD, Yang SY, Ahn BW. (2001) Effects of flavonoids on amyloid $\beta$ peptide toxicity in PC12 cells. Korean. J. Gerontol., 11, 41-48
  22. Leopoldini M, Russo N, Chiodo S, Toscano M. (2006) Iron chelation by the powerful antioxidant flavonoid quercetin. J. Agric. Food Chem., 54, 6343-6351 https://doi.org/10.1021/jf060986h
  23. Tereza Fernandez M, Lurdes Mira M, Helena Florencio M, Jennings KR. (2002) Iron and copper chelation by flavonoids: an electrospray mass spectrometry study. J. Inorg. Biochem., 92, 105-111 https://doi.org/10.1016/S0162-0134(02)00511-1
  24. Lee SH, Song KB. (2009) Purification of an iron-binding nona-peptide from hydrolysates of porcine blood plasma protein. Process Biochem., 44, 378-381 https://doi.org/10.1016/j.procbio.2008.12.001
  25. Hartmann R, Meisel H. (2007) Food-derived peptides with biological activity: from research to food applications. Curr. Opin. Biotechnol., 18, 163-169 https://doi.org/10.1016/j.copbio.2007.01.013
  26. 26. Jung WK, Karawita R, Heo SJ, Lee BJ, Kim SK, Jeon YJ. (2006) Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. Process Biochem., 41, 2097-2100 https://doi.org/10.1016/j.procbio.2006.05.008
  27. Jeon SJ, Lee JH, Song KB. (2010) Preparation for calcium and iron-binding peptides from rice bran protein hydrolysates. J. Appl. Biol. Chem., 53, 174-178 https://doi.org/10.3839/jabc.2010.031
  28. Kim SB, Seo IS, Khan MA, Ki KS, Lee WS, Lee HJ, Shin HS, Kim HS. (2007) Enzymatic hydrolysis of heated whey: Iron-binding ability of peptides and antigenic protein fractions. J. Dairy Sci., 90, 4033-4042 https://doi.org/10.3168/jds.2007-0228