DISCRETE PRESENTATIONS OF THE HOLOMONY GROUP OF A ONE-HOLED TORUS

HONG CHAN KIM

Abstract. A one-holed torus $\Sigma(1,1)$ is a building block of oriented surfaces. In this paper we formulate the matrix presentations of the holonomy group of a one-holed torus $\Sigma(1,1)$ by the gluing method. And we present an algorithm for deciding the discreteness of the holonomy group of $\Sigma(1,1)$.

1. Introduction

A hyperbolic structure on a smooth surface M is a representation of M as a quotient Ω/Γ of a convex domain $\Omega \subset \mathbb{H}^2$ by a discrete group $\Gamma \subset \text{PSL}(2, \mathbb{R})$ acting properly and freely. If the Euler characteristic $\chi(M)$ of M is negative, then the equivalence classes of hyperbolic structures on M form a deformation space $\mathcal{T}(M)$ called the Teichmüller space.

Let M be a compact connected smooth surface with $\chi(M) < 0$. Denote π by the fundamental group $\pi_1(M)$ of M. For a given hyperbolic structure on M, the action of π on the universal covering space \tilde{M} of M produces a homomorphism $h : \pi \to \text{PSL}(2, \mathbb{R})$ called the holonomy homomorphism and it is well-defined up to conjugation. Hence the Teichmüller space $\mathcal{T}(M)$ has a natural topology which identified with the open dense subset of the orbit space $\text{Hom}(\pi, \text{PSL}(2, \mathbb{R}))/\text{PSL}(2, \mathbb{R})$ corresponding to irreducible representations. Since the holonomy homomorphism $h : \pi \to \text{PSL}(2, \mathbb{R})$ is an isomorphism onto its image $\Gamma = h(\pi)$ called the holonomy group, the generators of π can be presented by the matrices in $\text{PSL}(2, \mathbb{R})$ up to conjugation. (Goldman [2], Johnson and Millson [4]) Therefore giving a hyperbolic structure on M is equivalent to finding a discrete subgroup Γ of $\text{PSL}(2, \mathbb{R})$ up to conjugation. (Matsuzaki and Taniguchi [8])

Let $M = \Sigma(g,n)$ be a compact connected oriented surface with g-genus and n-boundary components. If $\chi(M) = 2 - 2g - n < 0$, then the Teichmüller space $\mathcal{T}(M)$ is diffeomorphic to $\mathbb{R}^{6g-6+3n}$. And M can be decomposed as a disjoint union

2000 Mathematics Subject Classification. Primary 57M50, 32G15.

Key words and phrases. a one-holed torus, hyperbolic structure, holonomy group, discreteness.

The author gratefully acknowledges the support from a Korea University Grant.

© 2010 The Korean Society of Mathematical Education
of g one-holed tori $\Sigma(1,1)$ and $g-2+n$ pairs of pants $\Sigma(0,3)$. Thus a one-holed torus $\Sigma(1,1)$ and a pair of pants $\Sigma(0,3)$ are building blocks of an oriented surface M. (Wolpert [11])

The purposes of this paper are the followings: First we formulate the matrix presentations of the holonomy group of a one-holed torus $\Sigma(1,1)$ by the gluing method. The matrix presentations of the holonomy group of a pair of pants $\Sigma(0,3)$ in [6] will be used for the gluing method. Second we give an algorithm for deciding the discreteness of the holonomy group of $\Sigma(1,1)$.

2. PRELIMINARIES

Let $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ be the upper half plane. The Lie group $\text{PSL}(2,\mathbb{R})$ acts on \mathbb{H}^2 by

$$A \cdot z = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot z = \frac{az + b}{cz + d}.$$ \hfill (2.1)

An element A of $\text{SL}(2,\mathbb{R})$ is said to be hyperbolic if A has two distinct real eigenvalues. Since $f(x) = x^2 - tx + 1$ is the characteristic polynomial of $A \in \text{SL}(2,\mathbb{R})$ where $t = \text{tr}(A)$, A is hyperbolic if and only if $\text{tr}(A)^2 > 4$. An element A of $\text{PSL}(2,\mathbb{R})$ is said to be hyperbolic if A has two distinct fixed points on $\partial \mathbb{H}^2$. Since the absolute value of trace is still defined, A is hyperbolic if and only if $|\text{tr}(A)| > 2$. A hyperbolic element A of $\text{PSL}(2,\mathbb{R})$ can be expressed by the diagonal matrix

$$\begin{bmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{bmatrix} \text{let } \pm \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}$$ \hfill (2.2)

via an $\text{SL}(2,\mathbb{R})$-conjugation where $\alpha > 1$.

The following theorem is due to Kuiper [7].

Theorem 2.1. Suppose M is a compact oriented hyperbolic surface. Then every nontrivial element of the holonomy group Γ is hyperbolic.

A hyperbolic manifold M can be developed into \mathbb{H}^2 as follows. (Thurston [10])

Since the universal covering space \tilde{M} is simply connected, the coordinate charts on \tilde{M} can globalize to define a hyperbolic map $\text{dev} : \tilde{M} \to \mathbb{H}^2$, called the developing map. Let $\Omega = \text{dev}(\tilde{M})$ be the developing image in \mathbb{H}^2. For a non-trivial element A of the holonomy group $\Gamma \subset \text{PSL}(2,\mathbb{R})$, the translation length $\ell(A)$ is defined by $\ell(A) := \inf_{z \in \Omega} d_P(z, A(z))$ where d_P is the Poincaré metric on Ω. From Beardon's book [1], we get the relation

$$\left| \frac{\text{tr}(A)}{2} \right| = \cosh \left(\frac{\ell(A)}{2} \right).$$ \hfill (2.3)

Suppose that $|\text{tr}(A)| = \alpha + \alpha^{-1}$ with $\alpha > 1$. Since $\cosh^{-1}(t) = \log(t + \sqrt{t^2 - 1})$, Equation (2.3) becomes

$$\ell(A) = \log(\alpha^2)$$ \hfill (2.4)
for a hyperbolic element $A \in \text{PSL}(2, \mathbb{R})$.

The principal line of a hyperbolic element $A \in \text{PSL}(2, \mathbb{R})$ is the A-invariant unique geodesic in \mathbb{H}^2. It is the line joining the repelling and attracting fixed points of A. For easy understanding, see Figure 1, 2, and 3 or Beardon’s book [1]. We now consider the location of the principal line of A and the relations of entries of A. The following Theorem 2.2 is some results in [6].

Theorem 2.2. Let z_a, z_r be the attracting and repelling fixed points of a hyperbolic element $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \overset{\text{let}}{=} \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $\text{PSL}(2, \mathbb{R})$. Suppose both fixed points are finite (not infinite). Then we have the following relations.

1. $0 < z_a < z_r \iff a^2 < d^2, b c < 0, b d > 0$
2. $0 < z_r < z_a \iff a^2 > d^2, b c < 0, a c > 0$
3. $z_a < z_r < 0 \iff a^2 > d^2, b c < 0, a c < 0$
4. $z_r < z_a < 0 \iff a^2 < d^2, b c < 0, b d < 0$
5. $z_a < 0 < z_r \iff b c > 0, a c < 0, b d < 0$
6. $z_r < 0 < z_a \iff b c > 0, a c > 0, b d > 0$

![Figure 1](image1.png)

Figure 1. Fixed points with $0 < z_a < z_r$ and $0 < z_r < z_a$

![Figure 2](image2.png)

Figure 2. Fixed points with $z_a < z_r < 0$ and $z_r < z_a < 0$

Proposition 2.3. Let $\{x, y\}$ and $\{-b, b\}$ be the fixed points of hyperbolic elements $A, B \in \text{PSL}(2, \mathbb{R})$ respectively. Then the principal lines of A and B are perpendicular if and only if $b^2 = xy$.

Proof. (Case 1) In the case $x < y$. Consider the linear fractional transformation $f(z) = \frac{z-x}{z+y}$. This transformation $f : \mathbb{H}^2 \to \mathbb{H}^2$ is well-defined since $\det(f) =$
Figure 3. Fixed points with $z_a < 0 < z_r$ and $z_r < 0 < z_a$.

$y - x > 0$. Since f is a conformal map which send the fixed points $\{x, y\}$ of A to $\{0, \infty\}$, the principal lines of A and B are perpendicular if and only if those of $f(A)$ and $f(B)$ are perpendicular if and only if $f(-b) = -f(b)$; i.e. \(\left(\frac{-b-x}{b+y} \right) = -\left(\frac{b-x}{b+y} \right) \).

After some calculation we get the result $b^2 = xy$.

(Case II) In the case $y < x$. Consider $f(z) = \frac{z-x}{z-y}$. Then $f : \mathbb{H}^2 \to \mathbb{H}^2$ is well-defined since $\det(f) = -y + x > 0$. Similarly we can get the result $b^2 = xy$. \(\square\)

From the condition $xy = b^2 > 0$, we know both fixed points $\{x, y\}$ of A should be positive or negative.

3. Holonomy Group of a One-holed Torus $\Sigma(1, 1)$

Suppose a one-holed torus $\Sigma(1, 1)$ is equipped with a hyperbolic structure. Since the holonomy homomorphism $h : \pi \to \text{PSL}(2, \mathbb{R})$ is an isomorphism onto its image $\Gamma = h(\pi)$, we will identified the fundamental group π of $\Sigma(1, 1)$ with the holonomy group Γ; i.e. $\pi = \Gamma = \{ A, B, C \in \text{PSL}(2, \mathbb{R}) \mid R = CB^{-1}A^{-1}BA = I \}$.

Above argument is true for the hyperbolic structures. (See Goldman [2], Johnson and Millson [4].) But for a general geometric structure theory, the holonomy homomorphism h may not be an isomorphism onto its image. We can find examples in Sullivan and Thurston’s paper [9].

Figure 4. A one-holed torus $M = \Sigma(1, 1)$
Let $A, B, C \in \text{PSL}(2, \mathbb{R})$ represent elements of the fundamental group of M as in Figure 4. We will find the expression of the generators A, B and C of π in terms of $\text{SL}(2, \mathbb{R})$ instead of $\text{PSL}(2, \mathbb{R})$ because $\text{SL}(2, \mathbb{R})$ is more convenient to compute and understand than $\text{PSL}(2, \mathbb{R})$.

We now explain about the gluing method. Let $C_1, C_2, C_3 \in \text{SL}(2, \mathbb{R})$ represent the boundary components of a pair of pants $\Sigma(0,3)$ as in Figure 5. Then the fundamental group π of $\Sigma(0,3)$ is identified with $\pi = \langle C_1, C_2, C_3 \in \text{SL}(2, \mathbb{R}) \mid R = C_3C_2C_1 = I \rangle$.

![Figure 5. A pair of pants $M = \Sigma(0,3)$](image)

Suppose two boundary components C_1, C_2 of a pair of pants $\Sigma(0,3)$ have the same translation lengths; i.e. $\ell(C_1) = \ell(C_2)$. Then a one-holed torus $\Sigma(1,1)$ can be obtained by gluing two boundaries C_1, C_2 of a pair of pants $\Sigma(0,3)$. By the orientations of boundary components C_1 and C_2, the boundary C_1 is identified with C_2^{-1} up to conjugation. For an easy understanding, see the Figure 6. Thus there exists a matrix $Q \in \text{SL}(2, \mathbb{R})$ such that $C_1 = Q^{-1}C_2^{-1}Q$.

![Figure 6. Gluing boundary components C_1 with C_2^{-1}](image)

Without loss of generality, we may assume that $\text{tr}(C_1) > 2$ and $\text{tr}(C_2) > 2$. In the cases $\text{tr}(C_1) < -2$ or $\text{tr}(C_2) < -2$, we replace C_1 to $-C_1$ or C_2 to $-C_2$. Suppose λ, μ are the eigenvalues of C_1, C_2 respectively with $\lambda > 1$ and $\mu > 1$. Since
\(\ell(C_1) = \log(\lambda^2) \) and \(\ell(C_2) = \log(\mu^2) \) in Equation (2.4), the condition \(\ell(C_1) = \ell(C_2) \) induces \(\lambda = \mu \).

Theorem 3.1. Suppose \(C_1, C_2, C_3 \in \text{SL}(2, \mathbb{R}) \) are the generators of the fundamental group of a pair of pants \(\Sigma(0, 3) \) with \(\ell(C_1) = \ell(C_2) \). If \(Q \in \text{SL}(2, \mathbb{R}) \) is a hyperbolic matrix such that \(C_1 = Q^{-1}C_2^{-1}Q \), then \(A := Q, B := C_2^{-1}, C := C_3 \) are the generators of the fundamental group of a one-holed torus \(\Sigma(1, 1) \).

Proof. By assumption, we have \(C_1 = Q^{-1}C_2^{-1}Q \). If we define \(A = Q, B = C_2^{-1}, C = C_3 \), then they are hyperbolic matrices and satisfy

\[
CB^{-1}A^{-1}BA = C_3C_2Q^{-1}C_2^{-1}Q = C_3C_2C_1 = I.
\]

Therefore \(A, B, C \) form the generators of the fundamental group of \(\Sigma(1, 1) \). \(\square \)

Now we find the matrix presentations of the holonomy group of a one-holed torus \(\Sigma(1, 1) \) by Theorem 3.1. The following Theorem 3.2 is one of the main results in [6]. Since the matrices \(C_1, C_2, C_3 \in \text{SL}(2, \mathbb{R}) \) are represented up to conjugation, without loss of generality, we may assume \(C_2 \) is diagonal.

Theorem 3.2. The following matrices \(C_1, C_2, C_3 \in \text{SL}(2, \mathbb{R}) \) with

\[
(3.1) \quad \lambda > 1, \; \mu > 1, \; a < \lambda^{-1}, \; c \neq 0
\]

form the generators of the holonomy group of a pair of pants \(\Sigma(0, 3) \).

\[
(3.2) \quad C_1 = \begin{pmatrix} a & -(\lambda - a)(\lambda^{-1} - a)c^{-1} \\ c & \lambda + \lambda^{-1} - a \end{pmatrix}, \quad C_2 = \begin{pmatrix} \mu & 0 \\ 0 & \mu^{-1} \end{pmatrix},
\]

and

\[
(3.3) \quad C_3 = \begin{pmatrix} \mu^{-1}(\lambda + \lambda^{-1} - a) & \mu(\lambda - a)(\lambda^{-1} - a)c^{-1} \\ -\mu^{-1}c & \mu a \end{pmatrix}.
\]

Proof. See Kim’s paper [6]. \(\square \)

The conditions in (3.1) are from the locations of principal lines of \(C_1, C_2, \) and \(C_3 \). See the Figure 7. In the case \(c < 0 \) (\(c > 0 \)), the fixed points of \(C_1 \) and \(C_3 \) are positive (negative) respectively. (Compare with the results (1) and (4) in Theorem 2.2.)

We now remind some relations between two hyperbolic elements \(A \) and \(\tilde{A} \) in \(\text{SL}(2, \mathbb{R}) \). See [6] for detail. For a hyperbolic element \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{R}) \), we denote \(\tilde{A} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} \). Then \(z \) is a fixed point of \(A \) if and only if \(-z \) is a fixed point of \(\tilde{A} \) since \(\tilde{A}(-z) = -A(z) \). And the principal lines of \(A \) and \(\tilde{A} \) are symmetric with respect to the imaginary axis. See the Figure 8.

Without loss of generality, we assume the fixed points of hyperbolic matrices \(C_1, C_3 \) in (3.2) and (3.3) are positive; i.e. we shall assume \(c < 0 \) from now on. In the case the fixed points are negative, we just consider \(\tilde{C}_1, \tilde{C}_3 \) instead of \(C_1, C_3 \). Then we can reformulate the matrix presentations of \(C_1, C_2, C_3 \) as follows.
Figure 7. The locations of the principal lines of a pair of pants Σ(0, 3)

Figure 8. The fixed points of the matrices A and \(\tilde{A} \)

Theorem 3.3. The following matrices \(C_1, C_2, C_3 \in \text{SL}(2, \mathbb{R}) \) with

\begin{equation}
\lambda > 1, \quad \mu > 1, \quad a < \lambda^{-1}
\end{equation}

form the generators of the holonomy group of a pair of pants \(\Sigma(0, 3) \).

\begin{equation}
C_1 = \begin{pmatrix}
\alpha & (\lambda - a)(\lambda^{-1} - a) \\
-1 & \lambda + \lambda^{-1} - a
\end{pmatrix}, \quad C_2 = \begin{pmatrix}
\mu & 0 \\
0 & \mu^{-1}
\end{pmatrix},
\end{equation}

and

\begin{equation}
C_3 = \begin{pmatrix}
\mu^{-1}(\lambda + \lambda^{-1} - a) & -\mu(\lambda - a)(\lambda^{-1} - a) \\
\mu^{-1} & \mu a
\end{pmatrix}.
\end{equation}
Proof. We rename the matrices in (3.2) and (3.3) as $B_1, B_2,$ and B_3. Let $P = \begin{pmatrix} \sqrt{-c} & 0 \\ 0 & \sqrt{-c^{-1}} \end{pmatrix}$. It is well-defined since we assume $c < 0$. Then we can calculate
\[
PAP^{-1} = \begin{pmatrix} \sqrt{-c} & 0 \\ 0 & \sqrt{-c^{-1}} \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} \sqrt{-c^{-1}} & 0 \\ 0 & \sqrt{-c} \end{pmatrix} = \begin{pmatrix} \alpha & -c\beta \\ -c^{-1}\gamma & \delta \end{pmatrix}.
\]
Thus we get the results $PB_1P^{-1} = C_1, PB_2P^{-1} = C_2,$ and $PB_3P^{-1} = C_3$ which are the matrices in (3.5) and (3.6). Since the generators of the holonomy group of surfaces are up to conjugation, we can think the matrices C_1, C_2 and C_3 form the generators of the holonomy group of a pair of pants $\Sigma(0, 3)$.

From now on, we denote C_1, C_2, C_3 as the matrices (3.5) and (3.6) in Theorem 3.3 instead of the matrices (3.2) and (3.3) in Theorem 3.2.

Consider the hyperbolic matrices $C_1, C_2 \in \text{SL}(2, \mathbb{R})$ in (3.5). Suppose that C_1 and C_2 have the same translation lengths; i.e. $\ell(C_1) = \ell(C_2)$. Since $\lambda > 1$ and $\mu > 1$, it is equivalent to $\lambda = \mu$ by Equation (2.4). Now we shall find a hyperbolic matrix $Q \in \text{SL}(2, \mathbb{R})$ such that $C_1 = Q^{-1}C_2^{-1}Q$.

Let $Q = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$. After some calculations, the relation $QC_1 = C_2^{-1}Q$ induces $y = -(\lambda^{-1} - a)x$ and $w = -(\lambda - a)z$; i.e. Q becomes
\[
Q = \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} x & -(\lambda^{-1} - a)x \\ z & -(\lambda - a)z \end{pmatrix}.
\]
Then the condition $\det(Q) = 1$ implies that $1 = xw - yz = -xz(\lambda - \lambda^{-1})$. Plug in $x = 1/\sqrt{\lambda - \lambda^{-1}}$ and $z = -x = -1/\sqrt{\lambda - \lambda^{-1}}$. Then the following matrix $Q \in \text{SL}(2, \mathbb{R})$ satisfies the condition $C_1 = Q^{-1}C_2^{-1}Q$;
\[
(3.7) \quad Q = \frac{1}{\sqrt{\lambda - \lambda^{-1}}} \begin{pmatrix} 1 & -(\lambda^{-1} - a) \\ -1 & (\lambda - a) \end{pmatrix}.
\]

Proposition 3.4. Suppose we have another $\tilde{Q} \in \text{SL}(2, \mathbb{R})$ such that $C_1 = \tilde{Q}^{-1}C_2^{-1}\tilde{Q}$. Then there exists a diagonal matrix $D \in \text{SL}(2, \mathbb{R})$ such that $\tilde{Q} = DQ$.

Proof. From the condition $Q^{-1}C_2^{-1}Q = C_1 = \tilde{Q}^{-1}C_2^{-1}\tilde{Q}$, we have $(\tilde{Q}Q^{-1})C_2^{-1} = C_2^{-1}(\tilde{Q}Q^{-1})$. Since C_2^{-1} is a diagonal matrix, the commutativity of $(\tilde{Q}Q^{-1})$ with C_2^{-1} implies $(\tilde{Q}Q^{-1})$ should be diagonal. Therefore there exists a diagonal matrix $D \in \text{SL}(2, \mathbb{R})$ such that $\tilde{Q} = DQ$. \qed

Let $D \in \text{SL}(2, \mathbb{R})$ be a diagonal matrix with entries $D_{11} = t$ and $D_{22} = t^{-1}$. Then we have
\[
(3.8) \quad \tilde{Q} = DQ = \frac{1}{\sqrt{\lambda - \lambda^{-1}}} \begin{pmatrix} t & -t(\lambda^{-1} - a) \\ -t^{-1} & t^{-1}(\lambda - a) \end{pmatrix}.
\]
Now we shall show that the matrix \tilde{Q} in (3.8) is hyperbolic.

Proposition 3.5. Let \tilde{Q} be the matrix in (3.8). Then
(1) \(\text{tr}(\bar{Q}) > 2 \) if and only if \(t > 0 \).
(2) \(\text{tr}(\bar{Q}) < -2 \) if and only if \(t < 0 \).

Proof. From Theorem 3.3, we have the conditions \(a < \lambda^{-1} < 1 < \lambda \). Suppose \(t > 0 \). Then we also have \(t^{-1}(\lambda - a) > 0 \). Thus

\[
\text{tr}(\bar{Q}) = \frac{t + t^{-1}(\lambda - a)}{\sqrt{\lambda - \lambda^{-1}}} \geq \frac{2\sqrt{\lambda - a}}{\sqrt{\lambda - \lambda^{-1}}} > 2
\]

since \((\lambda - a) > (\lambda - \lambda^{-1}) \). Conversely, suppose \(\text{tr}(\bar{Q}) > 2 \). Since \((\lambda - a) > 0 \), the sign of \(t \) should be positive. Similarly we can show \(t < 0 \) if and only if \(\text{tr}(\bar{Q}) < 2 \). \(\square \)

Thus the matrix \(\bar{Q} \) in (3.8) is hyperbolic and satisfies \(C_1 = Q^{-1}C_2^{-1}Q \). Consider the fixed points and the principal line of \(\bar{Q} \). Let \(w_r \) and \(w_a \) be the repelling and attracting fixed points of \(\bar{Q} \). We denote \(\sqrt{\lambda - \lambda^{-1}} \bar{Q} \) by \(\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \). Then we have \(\beta \gamma = (\lambda^{-1} - a), \alpha \gamma = -1, \) and \(\beta \delta = -(\lambda^{-1} - a)(\lambda - a) \). From the results in Theorem 2.2, the conditions \(\beta \gamma > 0, \alpha \gamma < 0, \beta \delta < 0 \) induces \(w_a < 0 < w_r \).

Proposition 3.6. Suppose \(\bar{Q} \) is the hyperbolic matrix in (3.8). Then the attracting and repelling fixed points \(w_a \) and \(w_r \) of \(\bar{Q} \) are

\[
w_a = \frac{-D - \sqrt{E}}{2}, \quad w_r = \frac{-D + \sqrt{E}}{2}
\]

where \(D = [t^2 - (\lambda - a)] \) and \(E = D^2 + 4t^2(\lambda^{-1} - a) \).

Proof. Since \(w_a, w_r \) are the fixed points of the transformation \(\bar{Q}(z) = \frac{\alpha z + \beta}{\gamma z + \delta} \), they are the roots of the equation \(\gamma z^2 + (\delta - \alpha) z - \beta = 0 \). Thus the fixed points \(w_a, w_r \) of \(\bar{Q} \) are

\[
\frac{(\alpha - \delta) \pm \sqrt{(\alpha - \delta)^2 + 4\beta \gamma}}{2\gamma} = \frac{[t-t^{-1}(\lambda - a)] \pm \sqrt{[t-t^{-1}(\lambda - a)]^2 + 4(\lambda^{-1} - a)}}{-2t^{-1}}
\]

\[
= \frac{-[\sqrt{2(\lambda - a)}]^2 + \sqrt{[t^2 - (\lambda - a)]^2 + 4t^2(\lambda^{-1} - a)}}{-2t^{-1}}
\]

From the above argument, we know the condition \(w_a < 0 < w_r \). Therefore we get the results \(w_a = \frac{-D - \sqrt{E}}{2} \) and \(w_r = \frac{-D + \sqrt{E}}{2} \). \(\square \)

Proposition 3.7. The principal line of \(\bar{Q} \) intersects those of \(C_1 \) and \(C_2 \).

Proof. Since the principal line of \(C_2 \) is the upper half imaginary axis, the condition \(w_a < 0 < w_r \) implies that the principal line of \(\bar{Q} \) intersects that of \(C_2 \).

The fixed points of \(C_1 \) in (3.5) are \(z_a = (\lambda^{-1} - a) \) and \(z_r = (\lambda - a) \) with \(0 < z_a < z_r \). From the conditions \(0 < z_a < z_r \) and \(w_a < 0 < w_r \), the principal line of \(\bar{Q} \) intersects that of \(C_1 \) if and only if \(z_a < w_r < z_r \)

\[
\iff 2(\lambda^{-1} - a) < -D + \sqrt{E} < 2(\lambda - a)
\]

\[
\iff 2(\lambda^{-1} - a) + D < \sqrt{E} < 2(\lambda - a) + D = [t^2 + (\lambda - a)]
\]

\[
\iff [2(\lambda^{-1} - a) + D]^2 < E < [t^2 + (\lambda - a)]^2 = D^2 + 4t^2(\lambda - a)
\]

\[
\iff 4(\lambda^{-1} - a)^2 + 4(\lambda^{-1} - a)D < 4t^2(\lambda^{-1} - a) < 4t^2(\lambda - a)
\]

\[
\iff (\lambda^{-1} - a) + D < t^2 < t^2(\lambda - a)(\lambda^{-1} - a)^{-1}.
\]
Both inequalities hold since \(a < \lambda^{-1} < \lambda \). \(\square \)

Suppose that the trace of \(\bar{Q} \) is positive; i.e. \(t > 0 \). Now we find when \(\bar{Q} \) has the smallest trace. From the proof of Proposition 3.5, we know the smallest value of the trace of \(\bar{Q} \) is \(2 \sqrt{\lambda-a} / \sqrt{\lambda-a} \). And it takes when \(t = t^{-1}(\lambda-a) \). i.e. \(t = \sqrt{\lambda-a} \) since \(t > 0 \). Let \(Q_0 \) be the \(\bar{Q} \) plug in \(t = \sqrt{\lambda-a} \). Then

\[
Q_0 = \bar{Q} \big|_{t=\sqrt{\lambda-a}} = \frac{\sqrt{\lambda-a}}{\sqrt{\lambda-a}} \begin{pmatrix} 1 & -1 \lambda^{-1} - a \\ -(\lambda-a)^{-1} & 1 \end{pmatrix}.
\]

Proposition 3.8. Suppose that \(Q_0 \) is the hyperbolic matrix in (3.9). Then the attracting and repelling fixed points \(w_a \) and \(w_r \) of \(Q_0 \) are

\[
w_a = -\sqrt{(\lambda^{-1} - a)(\lambda-a)}, \quad w_r = \sqrt{(\lambda^{-1} - a)(\lambda-a)}.
\]

Proof. We denote \(Q_0 = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \). Then the fixed points of \(Q_0 \) are \((\alpha - \delta) \pm \sqrt{(\alpha - \delta)^2 + 4\beta \gamma} \)

\[
= \pm \frac{2\sqrt{\beta \gamma}}{2\gamma} = \mp \sqrt{(\lambda^{-1} - a)(\lambda-a)}.
\]

Since \(w_a < 0 < w_r \), we get the results. \(\square \)

Theorem 3.9. The principal line of \(Q_0 \) orthogonally intersects those of \(C_1 \) and \(C_2 \).

Proof. Denote \(b = \sqrt{(\lambda^{-1} - a)(\lambda-a)} > 0 \). Then the fixed points of \(Q_0 \) are \(\pm b \). Thus the principal line of \(Q_0 \) orthogonally intersect \(C_2 \). Since the fixed points \(x, y \) of \(C_1 \) are \((\lambda^{-1} - a) \) and \((\lambda-a) \), we have \(b^2 = xy \). From Proposition 2.3, the principal line of \(Q_0 \) orthogonally intersect \(C_1 \). \(\square \)

Since \(\bar{Q} \) is hyperbolic such that \(C_1 = \bar{Q}^{-1}C_2^{-1}\bar{Q} \), we have the following theorem.

Theorem 3.10. The generators of the holonomy group of a one-holed torus \(\Sigma(1,1) \) are expressed by

\[
(3.10) \quad A = \frac{1}{\sqrt{\lambda-a}} \begin{pmatrix} t & -t(\lambda^{-1} - a) \\ -t^{-1} & t^{-1}(\lambda-a) \end{pmatrix}, \quad B = \begin{pmatrix} \lambda^{-1} & 0 \\ 0 & \lambda \end{pmatrix},
\]

and

\[
(3.11) \quad C = \begin{pmatrix} \lambda^{-1}(\lambda + \lambda^{-1} - a) & -\lambda(\lambda-a)(\lambda^{-1} - a) \\ \lambda^{-1} & \lambda a \end{pmatrix}
\]

with \(\lambda > 1, t > 0, a < \lambda^{-1} \) up to conjugation.

Proof. Consider the matrices \(C_1, C_2, C_3 \) in (3.5) and (3.6). First let \(\mu = \lambda \) since \(\ell(C_1) = \ell(C_2) \). From Theorem 3.1, \(A = \bar{Q}, B = C_2^{-1}, C = C_3 \) are the generators of the holonomy group of a one-holed torus \(\Sigma(1,1) \) up to conjugation. \(\square \)
4. Application: Algorithm for Deciding the Discreteness

Finally we can present an algorithm for deciding the discreteness of the holonomy group of a one-holed torus $\Sigma(1,1)$. Let A_r, B_r, A_a, B_a be the repelling and attracting fixed points of hyperbolic matrices A and B respectively. We define $\text{CR}(A, B)$ by the cross ratio of B_a, A_r, A_a, B_r; that is

$$\text{CR}(A, B) = [B_a, A_r, A_a, B_r] = \frac{(B_a - A_a)(A_r - B_r)}{(B_a - A_r)(A_a - B_r)}.$$

Then $\text{CR}(A, B) = \text{CR}(B, A)$ and represents the relations between the principal lines of A and B.

Definition 4.1. The principal lines of two hyperbolic elements A and B are said to be **intersect** if they intersect in \mathbb{H}^2, **intersect at infinity** if they intersect in $\partial \mathbb{H}^2$, **separated with the same orientation** (separated with the opposite orientation) if they do not intersect in $\mathbb{H}^2 \cup \partial \mathbb{H}^2$ and $A_r < A_a < B_r < B_a$ or $A_a < A_r < B_a < B_r$ ($A_r < A_a < B_a < B_r$ or $A_a < A_r < B_r < B_a$) up to conjugation.

Consider Figure 9. The principal lines of A, B are intersect, those of B, C are separated with the opposite orientation, and those of A, C are separated with the same orientation.

Theorem 4.2. Suppose A, B are hyperbolic matrices in $\text{SL}(2, \mathbb{R})$. Then the principal lines of A, B are

1. intersect $\iff \text{CR}(A, B) < 0$
2. intersect at infinity $\iff \text{CR}(A, B) = 0$ or ∞
3. separated with the opposite orientation $\iff 0 < \text{CR}(A, B) < 1$
4. separated with the same orientation $\iff \text{CR}(A, B) > 1$

Proof. Suppose f is a linear fractional transformation such that $f(B_r) = \infty$ and $f(B_a) = 0$. Since the cross ratio is invariant under the linear fractional transformations,

$$\text{CR}(A, B) = \frac{(0 - z_a)(z_r - \infty)}{(0 - z_r)(z_a - \infty)} = \frac{z_a}{z_r},$$

where $z_a = f(A_a)$ and $z_r = f(A_r)$. If $\text{CR}(A, B) = z_a/z_r < 0$, then the fixed points of $f(A)$ have the opposite signs. Thus the principal lines of $f(A), f(B)$ are intersect. Therefore those of A, B are also intersect since they are invariant under linear fractional transformations. If $\text{CR}(A, B) = z_a/z_r = 0$, then $z_a = 0$ or $z_r = \infty$. Then the principal lines of $f(A), f(B)$ are intersect at infinity. Thus those of A, B have the same result. We can prove similarly the case $\text{CR}(A, B) = z_a/z_r = \infty$. If $0 < \text{CR}(A, B) = z_a/z_r < 1$, then both fixed point have the same signs. Thus if $z_r > 0$ then $0 < z_a < z_r$, and if $z_r < 0$ then $z_r < z_a < 0$. Therefore they are separated with the opposite orientation. The cases $\text{CR}(A, B) > 1$ can be similarly proved. \hfill \square

Remark 4.3. Since A is hyperbolic, A has two distinct fixed points. Thus the case $\text{CR}(A, B) = z_a/z_r = 1$ can not be happen.
Suppose A, B, C are hyperbolic elements. Then the holonomy group
\[\pi = \langle A, B, C \mid R = CB^{-1}A^{-1}BA = I \rangle \]
is discrete if and only if the principal lines of A, B, C are located as in Figure 9 up to conjugation. (Keen [5], Goldman [3])

![Figure 9. The locations of the principal lines of a one-holed torus $\Sigma(1,1)$](image)

Proposition 4.4. Suppose that the matrix C in (3.11) is hyperbolic. Let C_a, C_r be the fixed point of C. Then we have
\[
C_a, C_r = \frac{F \pm \sqrt{G}}{2}
\]
where $F = (\lambda + \lambda^{-1} - a - \lambda^2 a)$ and $G = (\lambda + \lambda^{-1} - a + \lambda^2 a)^2 - 4\lambda^2$.

Proof. We give the same proof in Proposition 3.6. We denote $C = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$. Then the fixed points of C are
\[
\frac{(\alpha - \delta) \pm \sqrt{(\alpha - \delta)^2 + 4\beta \gamma}}{2\gamma} = \frac{(\alpha - \delta) \pm \sqrt{(\alpha + \delta)^2 - 4}}{2\gamma}.
\]
Thus C_a, C_r are
\[
\frac{[\lambda^{-1}(1 + \lambda^{-1} - a) - \lambda a] \pm \sqrt{[\lambda^{-1}(1 + \lambda^{-1} - a) + \lambda a]^2 - 4}}{2\lambda^{-1}}.
\]
Therefore we get the results. \(\square\)

Theorem 4.5 (Main Theorem). Suppose A, B are hyperbolic matrices in $\text{SL}(2, \mathbb{R})$ with $\text{tr}(A) > 2$ and $\text{tr}(B) > 2$. Let $\pi = \langle A, B, C \mid CB^{-1}A^{-1}BA = I \rangle$. Then π is discrete if and only if $\text{CR}(A, B) < 0$ and $\text{tr}(C) < -2$.

Proof. (\Rightarrow) Without loss of generality we may assume A, B, C are the matrices in (3.10) and (3.11). Suppose π is discrete. Since the principal lines of A, B are intersect, we have $\text{CR}(A, B) < 0$ by Theorem 4.2. Let C_a, C_r and C_{ij} stand for the fixed points and the (i, j)-th entry of the matrix C. Since $0 < C_a < C_r$, we have $|C_{11}| < |C_{22}|$ and $C_{12}C_{22} > 0$ by Theorem 2.2. Then the condition
\[
C_{12}C_{22} = -\lambda^2 a(\lambda - a)(\lambda^{-1} - a) > 0
\]
implies $a < 0$ since $\lambda > 1$ and $a < \lambda^{-1}$. And the condition
\[
|C_{11}| = |\lambda^{-1}||\lambda + \lambda^{-1} - a| < |C_{22}| = |\lambda||a|
\]
induces \(\lambda^{-1}(\lambda + \lambda^{-1} - a) < \lambda(-a) \). Thus
\[
\text{tr}(C) = \lambda^{-1}(\lambda + \lambda^{-1} - a) + \lambda a < 0.
\]
Since \(C \) is hyperbolic, the trace of \(C \) should be less than \(-2\).

\((\Leftarrow)\) Since \(\text{CR}(A, B) < 0 \), the principal lines of \(A, B \) are intersect. Without loss of

generality we may assume the principal line of \(B \) is the upper half of the imaginary
axis. Thus the fixed points of \(A \) are \(w_a < 0 < w_r \) up to conjugation. To show the
discreteness, we have to show that if \(\text{tr}(C) < -2 \), then \(w_r < C_a < C_r \).

The condition \(\text{tr}(C) = \lambda^{-1}(\lambda + \lambda^{-1} - a) + \lambda a < -2 \) implies \(a < 0 \) since \(\lambda > 1 \)
and \(a < \lambda^{-1} \). Therefore we have the followings;
\[
\begin{align*}
C_{12}C_{21} & = -(\lambda - a)(\lambda^{-1} - a) < 0 \\
C_{12}C_{22} & = -\lambda^2 a(\lambda - a)(\lambda^{-1} - a) > 0 \\
|C_{11}||C_{22}| & = \lambda^{-1}(\lambda + \lambda^{-1} - a) - \lambda(-a) = \text{tr}(C) < -2.
\end{align*}
\]
By Theorem 2.2, we get \(0 < C_a < C_r \). Hence, from Proposition 4.4, the fixed point
\(C_a \) and \(C_r \) of \(C \) should be
\[
C_a = \frac{F - \sqrt{G}}{2} \quad \text{and} \quad C_r = \frac{F + \sqrt{G}}{2}.
\]
In the proof of Proposition 3.7, we showed \(w_r < z_r = (\lambda - a) \). Thus to show \(w_r < \)
\(C_a < C_r \), it is enough to show that \(z_r < C_a \). This is equivalent to \(2(\lambda - a) < F - \sqrt{G} \).

Since
\[
\sqrt{G} < F - 2(\lambda - a) = -\lambda + \lambda^{-1} + a - \lambda^2 a,
\]

and \(-\lambda + \lambda^{-1} + a - \lambda a > -\lambda - \lambda^{-1} + a - \lambda^2 a = -\text{tr}(C)\lambda > 0 \), it is equivalent to show that
\[
G = (\lambda + \lambda^{-1} - a + \lambda^2 a)^2 - 4\lambda^2 < (-\lambda + \lambda^{-1} + a - \lambda^2 a)^2.
\]

After some calculations, we can get the equivalent condition
\[
(\lambda^2 - 1)(\lambda - a) > 0.
\]
This is true since \(\lambda > 1 \) and \(\lambda > a \). It proves the main theorem.

We give an algorithm for deciding the discreteness of a holonomy group of a
one-holed torus \(\Sigma(1, 1) \). For given two hyperbolic matrices \(A, B \) in \(\text{SL}(2, \mathbb{R}) \),

Step 1: Compute \(\text{tr}(A) \) and \(\text{tr}(B) \). If \(\text{tr}(A) < -2 \), then replace \(A \) by \(-A\).
Similarly if \(\text{tr}(B) < -2 \), then replace \(B \) by \(-B\).

Step 2: By step 1, without loss of generality, we may assume that \(\text{tr}(A) > 2 \)
and \(\text{tr}(B) > 2 \). Compute the attracting and repelling fixed points \(A_a, A_r \) of
\(A \) and \(B_a, B_r \) of \(B \).

Step 3: Compute \(\text{CR}(A, B) = [B_a, A_r, A_a, B_r] \). If \(\text{CR}(A, B) < 0 \), then go to
step 4. Otherwise the hyperbolic matrices \(A, B \) can not generate a discrete
holonomy group of \(\Sigma(1, 1) \).
Step 4: Compute $C = A^{-1}B^{-1}AB$. If $\text{tr}(C) < -2$, then
\[\pi = \langle A, B, C \in \text{SL}(2, \mathbb{R}) \mid R = CB^{-1}A^{-1}BA = I \rangle \]
is a discrete group. If $\text{tr}(C) \geq -2$, then π is not discrete.

Using above algorithm we can make a computer program determine the discreteness of a holonomy group.

REFERENCES

Department of Mathematics Education, Korea University, Seoul 136-701, Korea
Email address: hongchan@korea.ac.kr