DOI QR코드

DOI QR Code

자율적 상호협동을 통한 모바일 센서의 자기위치파악

Autonomous Cooperative Localization of Mobile Sensors

  • 투고 : 2009.02.14
  • 심사 : 2009.08.18
  • 발행 : 2010.04.30

초록

모바일 센서 네트워크(Mobile Sensor Network)의 노드(Node)인 모바일 센서 차량(Mobile Sensor Vehicles)들은 특정 지역에 관해 획득한 정보를 서로 교환하고 통합하는 과정을 거쳐 자신의 위치를 파악하게 되는데 이를 지역화(localization)라 한다. 이때 모바일 센서 차량은 탑재된 각종 센서를 이용하여 자신의 위치 정보를 파악한다. 본 연구에서는 데드-레코닝(Dead-Reckoning), 컴퓨터 비전 기법, 그리고 RSSI(Received Signal Strength Identification)를 사용한 모바일 센서 차량(MSV)의 지역화 정밀도를 향상시키는 방안을 제시하고, 각각의 방식들이 가진 장점을 융합하여 보다 정밀한 지역화를 할 수 있는지 살펴본다.

Mobile Sensor Vehicles, nodes of Mobile Sensor Network, are navigating for a specific, maybe unknown, region. For the precise usage of MSN, MSV has to be able to do localization by integrating information through communication by each other. In addition, MSV should be localized with various sensors equipped. In this research, we propose a set of techniques that improve accuracy using human mimic by combining and exploiting the existing techniques such as Dead-Reckoning, Computer Vision and Received Signal Strength Identification.

키워드

참고문헌

  1. J. Borenstein and L. Feng, “A Method for Measuring, Comparing, and Correcting Dead-Reckoning Errors in MobileRobots,” December, 1994.
  2. J. Borenstein, L. Feng, Professors D. K. Wehe, Y. Koren, Grad Students,Z. Fan, B. Holt, B. Costanza, “UMBmark - A Method for Measuring, Comparing, and Correcting Dead-reckoning Errors in Mobile Robots,” 1995.
  3. Sina-park, “odometry Error Correction with a gyro sensor for the mobile robot localization,” December, 2005.
  4. Jae Young Park, Ha Yoon Song, “Multilevel Localization for Mobile Sensor Network Platforms,” First International Symposium on Multimedia-Real Time Software(RTS'08), October, 2008.
  5. Jae Young Park, Ha Yoon Song, “모바일 센서 차량의 하드웨어 설계”, KISS Korea Computer Congress, 2007.
  6. J.-S. Gutmann, W. Burgard, D. Fox, K. Konolige, “An Experimental Comparion of Localization Method,” IROS, 1998.
  7. J.-S. Gutmann, C. Schlege, AMOS, “Comparison of Scan Matching approaches for self-Localization in indoor Environments,” EUROBOT, 1996.
  8. M. A. Fischler, R. C. Bolles. “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,” Comm. of the ACM, Vol.24, pp.381-395, 1981. https://doi.org/10.1145/358669.358692
  9. Xiao Shan Gao and Xiao‐Roing Hou and Jianliang Tang and Hang‐Fei Cheng, “Complete Solution Classification for the Perspective Three Point Problem,” IEEE TRANSACTIONS ONPATTERN ANALYSIS AND MACHINE INTELLIGENCE, Vol.25, August, 2003. https://doi.org/10.1109/TPAMI.2003.1217599
  10. Haralick, R.M and Lee, D and Ottenburg, K and Nolle, M, “Analysis and Solutions of The Three Point Perspective Pose Estimation Problem,” IEEE Computer Vision and Pattern Recognition Computer Society Conference on, 592-598, June, 1991.
  11. 조관식, 송하윤, 박준, “컴퓨터 비전 기반 근거리 지역화의 최적조건”, 정보과학회, 2008.
  12. Kwan Sik Cho, Ha Yoon Song, Jun Park, “Accurate Localization in Short Distance based on Computer Vision for Mobile Sensors,” IMCSIT, 2008.
  13. B. Kuipers and Y.-T.Byun, “A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations,” Journal of Robotics and Autonomous Systems, 1991.
  14. S. Thrun, “Learning Maps for Indoor Mobile Robot Navigation,” Artificial Intelligence, 1999.