DOI QR코드

DOI QR Code

수치해석을 이용한 SHPB 시험의 마찰영향 분석과 보정에 대한 연구

Numerical Investigation of Frictional Effects and Compensation of Frictional Effects in Split Hopkinson Pressure Bar (SHPB) Test

  • 차성훈 (서울산업대학교 NID융합대학원) ;
  • 신현호 (강릉원주대학교 재료공학과) ;
  • 김종봉 (서울산업대학교 자동차공학과)
  • Cha, Sung-Hoon (Graduate School of NID Fusion Tech., Seoul Nat'l Univ. of Tech.) ;
  • Shin, Hyun-Ho (Dept. of Materials Engineering, Gangneung-Wonju Nat'l Univ.) ;
  • Kim, Jong-Bong (Dept. of Automotive Engineering, Seoul Nat'l Univ. of Tech.)
  • 투고 : 2009.02.25
  • 심사 : 2010.03.16
  • 발행 : 2010.05.01

초록

SHPB시험은 입력봉과 출력봉 사이에 시편을 위치시키고 고속으로 변형하여 동적 응력-변형률 선도를 추출하는 것이다. 그렇기 때문에, 소재와 입력봉 사이 또는 소재와 출력봉 사이의 마찰이 측정되는 응력-변형률 선도에 영향을 주게 된다. 이것은 측정되는 응력이 유동응력이 아니고 축방향 응력이기 때문임을 확인 하였다. 본 연구에서는 측정되는 축방향 응력을 보정하여 정확한 유동응력을 구하기 위해 새로운 보정식을 제안하였다. 소재가 업셋팅 형태로 변형한다고 가정하고, 에너지 보존에 기초하여 보정식을 제안하였다. ABAQUS를 이용한 수치적 실험을 통해 마찰계수 0.3까지 보정한 결과 보정식이 유용함을 확인하였다.

The split Hopkinson pressure bar (SHPB) has been widely used to determine the mechanical properties of materials at high loading rates. However, to ensure test reliability, the source of measurement error must be identified and eliminated. During the experiment, specimens were placed between the incident and the transmit bar. Contact friction between the test bars and specimen may cause errors. In this study, numerical experiments were carried out to investigate the effect of friction on the test results. In the SHPB test, the stress measured by the transmitted bar is assumed to be the flow stress of the test specimen. However, performing numerical experiments, it was shown that the stress measured by the transmit bar is axial stress components. When the contact surface is frictionless, the flow stress and axial stress of the specimen are approximately equal. On the other hand, when the contact surface is not frictionless, the flow stress and axial stress are no longer equal. The effect of friction on the difference between the flow stress and axial stress was investigated.

키워드

참고문헌

  1. Sasso, M., Newaz, G. and Amodio, D., 2007, “Material Characterization at High Strain Rate by Hopkinson Bar Tests and Finite Element Optimization,” Materials Science and Engineering A, Vol. 487, pp. 289-300. https://doi.org/10.1016/j.msea.2007.10.042
  2. Hopkinson, B., 1914, “A Method of Measuring the Pressure Produced in the Detonation of High Explosives or by the Impact of Bullets,” Philos Trans R Soc Lond Series A, Vol. 213, pp. 437-452. https://doi.org/10.1098/rsta.1914.0010
  3. Kolsky, H., 1949, “An Investigation of the Mechanical Properties of Materials at very High Rates of Loading,” Proc Phys Soc Lond Sec B Vol. 62, pp. 676-700. https://doi.org/10.1088/0370-1301/62/11/302
  4. Kolsky, H., 1949, “An Investigation of the Mechanical Studies in Plastic Wave Propagation,” J Mech Phys Solids, Vol. 10, pp. 195-223.
  5. Kolsky, H., 1963, Stress Waves in Solids, Dover Publications Inc., New York.
  6. Forrestal, M. J., Wright, T. W. and Chen, W., 2007, “The Effect of Radial Inertia on Brittle Samples During the Split Hopkinson Pressure Bar Test,” International Journal of Impact Engineering, Vol. 34, pp. 405-411. https://doi.org/10.1016/j.ijimpeng.2005.12.001
  7. Nicholas, T., 1982, “Material Behavior at High Strain Rates,” Impact Dynamics [chapter 8], New York: Wiley.
  8. Franz, C. E., Follansbee, P. S. and Wright, W.H., 1984. “New Experimental Techniques with the Split Hopkinson Pressure Bar,” In: Berman, I. and Schroeder, J. W., editors., Eighth International Conference On High Energy Rate Fabrication, Pressure Vessel and Piping Division. ASME.
  9. Nemat-Nasser, S., Isaacs, J. B. and Starrett, J. E., 1991, “Hopkinson Techniques for Dynamic Recovery Experiments,” Proc R Soc Lond A, Vol. 435, pp. 371-391. https://doi.org/10.1098/rspa.1991.0150
  10. Tamesh, K. T. and Narasimhan, S., 1996, “Finite Deformations and the Dynamic Measurement of Radial Strains in Compression Koldky Bar Experiments,” Int. J Solids Struct. Vol. 33, pp. 3723-3738. https://doi.org/10.1016/0020-7683(95)00206-5
  11. Gray, G. T., 2000, “Classic Split-Hopkinson Pressure Bar Technique,” ASM Handbook 8, Mechanical Testing and Evaluation ASM International, Materials Park, OH, 44073-0002.
  12. Lee, O. S., Chong, J. H., Kang, H. S. and Kim, J. H., 1997, “Constitutive-law Under High Strain Rate Loading,” Proc. of KSPE, Fall, pp. 724-727.
  13. Pochhammer, L., 1876, “On the Progagation Velocities of Small Oscillations in an Unlimited Isotropic Circular Cylinder,” J. Reine Angewandte Math, Vol. 81 p. 324.
  14. Chree, C., 1889, “The Equations of an Isotropic Elastic Solid in Polar and Cylindrical Coordinates, Their Solutions and Applications,” Cambridge Phil. Soc. Trans., Vol. 14, p. 250.
  15. Gorham, D. A., Pope, P. H. and Cox, O., 1984, “Sources of Error in very High Strain Rate Compression Tests,” Proceedings of the Third Conference on the Mechanical Properties of Materials at High Rates of Strain, Oxford, 9-12 april, 1984, Conference series, No. 70, Instityte of Physics, Great Britain, pp. 151-158.
  16. Hartley, R. S., Cloete, T. J. and Nurick, G. N., 2007, “An Experimental Assessment of Friction Effects in the Split Hopkinson Pressure Bar Using the Ring Compression Test,” International Journal of Impact Engineering, Vol. 34, pp. 1705-1728. https://doi.org/10.1016/j.ijimpeng.2006.09.003
  17. Meng, H. and Li, Q. M., 2003, “Correlation Between the Accuracy of a Shpb Test and the Stress Uniformity Based on Numerical Experiments,” International Journal of Impact Engineering, Vol. 28, pp. 537-555. https://doi.org/10.1016/S0734-743X(02)00073-8
  18. Lee, O. S., Kim, G. H. and Hwang, S. W., 2000, “Determination of Deformation Behavior of the A16061-T6 Under High Strain Rate Tensile Loading Using SHPB Technique,” Trans. of the KSME(A), Vol. 24, No. 12, pp. 3033-3039.
  19. Park, K. J., Yang, H. M. and Min, O. K., 2001, “The Effect of Temperature in Hign Temperature SHPB Test,” Proc. of the KSME, Fall, pp. 349-354.
  20. Yang, H. M., and Min, O. K., 2006, “Constitutive Equation for SM45C at High Temperature and High Strain Rate,” Proc. of the KSME, Fall, pp. 21-25.
  21. Bertholf, L. D. and Karnes, C. H., 1975, “Two-Dimensional Analysis Of The Split Hopkins Pressure Bar System,” J. Mech. Phys. Solids, Vol. 23, pp. 1-19. https://doi.org/10.1016/0022-5096(75)90008-3
  22. HIll, R., 1950, The Mathematical Theory of Plasticity, Oxford University Press, London, p. 277.

피인용 문헌

  1. A Numerical Investigation into the Tensile Split Hopkinson Pressure Bars Test for Sheet Metals vol.421, pp.1662-7482, 2013, https://doi.org/10.4028/www.scientific.net/AMM.421.464
  2. Measurement of a Nearly Friction-Free Stress–Strain Curve of Silicone Rubber up to a Large Strain in Compression Testing vol.58, pp.9, 2018, https://doi.org/10.1007/s11340-018-0426-z