DOI QR코드

DOI QR Code

열-유동 상호작용을 고려한 유도가열 적용 미세 사출성형의 통합적 수치해석

Integrated Numerical Analysis of Induction-Heating-Aided Injection Molding Under Interactive Temperature Boundary Conditions

  • 엄혜주 (서울산업대학교 에너지환경대학원 Nano-IT 공학과) ;
  • 박근 (서울산업대학교 기계설계.자동화공학부)
  • Eom, Hye-Ju (Dept. of Nano-IT Engineering, Seoul Nat'l Univ. Tech.) ;
  • Park, Keun (School of Mechanical Design and Automation Engineering, Seoul Nat'l Univ. Tech.)
  • 투고 : 2009.11.30
  • 심사 : 2010.03.02
  • 발행 : 2010.05.01

초록

최근 박육사출성형이나 마이크로 사출성형에서의 성형성을 높이기 위해 급속 금형가열 기술이 사용되고 있다. 고주파 유도가열은 전자기 유도현상을 이용하여 금형 표면만을 효율적으로 가열할 수 있어 급속 금형가열 기술로서 활용되고 있다. 본 연구에서는 고주파 유도가열 적용 사출성형 과정의 수치적 모사를 위해 전자기장 해석, 열전달 해석, 사출성형 유동해석을 연계한 통합적 전산모사 기법에 관한 연구를 수행하였다. 본 연구에서 제안된 통합적 전산모사 기법을 유도가열 적용 박육 사출성형의 해석에 적용하여 실험결과와 비교하였고, 특히 금형온도 경계조건의 부여방식에 따른 해석의 신뢰성에 대한 고찰이 이루어졌다.

In recent years, several rapid-mold-heating techniques that can be used for the injection molding of thin-walled parts or micro/nano structures have been developed. High-frequency induction heating, which involves heating by electromagnetic induction, is an efficient method for the rapid heating of mold surfaces. The present study proposes an integrated numerical model of the high-frequency induction heating process and the resulting injection molding process. To take into account the effects of thermal boundary conditions in induction heating, we carry out a fully integrated numerical analysis that combines electromagnetic field calculation, heat transfer analysis, and injection molding simulation. The proposed integrated simulation is extended to the injection molding of a thin-wall part, and the simulation results are compared with the experimental findings. The validity of the proposed simulation is discussed according to the ways of the boundary condition imposition.

키워드

참고문헌

  1. Selden, R., 2000, “Thin Wall Molding of Engineering Plastics – A Literature Survey,” J. Injection Molding Tech., Vol. 4, pp. 159-166.
  2. Jim, F., 1995, “Thin Wall Molding Differences in Processing over Standard Injection Molding,” SPE ANTEC, Vol. 41, pp. 430-433.
  3. Kim, B. H. and Suh, N. P., 1986, “Low Thermal Inertia Molding,” Polym. Plast. Technol. Eng., Vol. 25, pp. 73-93. https://doi.org/10.1080/03602558608070076
  4. Jansen, K. M. B. and Flaman, A. A. M., 1994, “Construction of Fast-Response Heating Elements for Injection Molding Applications,” Polym. Eng. Sci., Vol. 34, pp. 894-897. https://doi.org/10.1002/pen.760341105
  5. Yao, D. and Kim, B., 2002, “Increasing Flow Length in Thin Wall Injection Molding Using a Rapidly Heated Mold,” Polym. Plast. Technol. Eng., Vol. 415, pp. 819-832.
  6. Park, K., Kim, B. and Yao, D., 2006, “Numerical Simulation for Injection Molding with a Rapidly Heated Mold, Part I: Flow Simulation for Thin Wall Parts,” Polym. Plast. Technol. Engng. Vol. 45, pp. 897-902. https://doi.org/10.1080/03602550600718142
  7. Chen, S. C., Peng, H. S., Chang, W. R. and Jong, W. R., 2004, “Simulations and Verifications of Induction Heating on a Mold Plate,” Int. Comm. Heat Mass Transfer, Vol. 31, pp. 971-980. https://doi.org/10.1016/j.icheatmasstransfer.2004.05.007
  8. Park, K., Hwang, J. J., Kwon, O. K. and Yun, J. H., 2007, “Finite Element Analysis of Induction Heating Process for Development of Rapid Mold Heating System,” Trans. Mat. Proc., Vol. 16, pp. 113-119.
  9. Kwon, O. K., Jeong, H. T., Yun, J. H. and Park, K., 2007, “A Study of Rapid Mold Heating System Using High-Frequency Induction Heating,” Trans. J. Kor. Soc. Mech. Engng. (A), Vol. 31, pp. 594-600. https://doi.org/10.3795/KSME-A.2007.31.5.594
  10. Eom, H. and Park, K., 2009, “Fully-Coupled Numerical Analysis of High-Frequency Induction Heating for Thin-Wall Injection Molding,” Polym. Plast. Tech. Eng. Vol. 48, pp. 1070-1077. https://doi.org/10.1080/03602550903092484

피인용 문헌

  1. Temperature Dependence and Magnetic Properties of Injection Molding Tool Materials Used in Induction Heating vol.51, pp.9, 2015, https://doi.org/10.1109/TMAG.2015.2428215
  2. Three-dimensional numerical modeling of an induction heated injection molding tool with flow visualization vol.85, pp.1-4, 2016, https://doi.org/10.1007/s00170-015-7955-8