DOI QR코드

DOI QR Code

코드섬유-고무 복합재료의 물성치에 대한 계면의 영향

Effect of Interface on the Properties of Cord-Rubber Composites

  • 임현우 (울산대학교 기계자동차공학부) ;
  • 김종국 (울산대학교 기계자동차공학부) ;
  • 염영진 (울산대학교 기계자동차공학부)
  • Lim, Hyun-Woo (School of Mechanical and Automotive Engineering, Univ. of Ulsan) ;
  • Kim, Jong-Kuk (School of Mechanical and Automotive Engineering, Univ. of Ulsan) ;
  • Yum, Young-Jin (School of Mechanical and Automotive Engineering, Univ. of Ulsan)
  • 투고 : 2009.12.07
  • 심사 : 2010.03.22
  • 발행 : 2010.05.01

초록

고무의 비선형성과 대변형으로 인해 코드-고무 복합재료의 정확한 거동을 파악하기는 어렵다. 코드와 고무 사이에 제 3 의 상을 가정해서 세 가지 상에 대한 모델링을 하기도 하지만 코드-고무 복합재료 계면의 두께와 물성을 결정하기 힘들다. 본 연구에서는 2 차원 일반화된 평면변형률요소와 평면변형률요소를 사용한 유한요소법을 적용하여 여러 가지 계면 두께를 갖는 코드-고무 복합재료의 유효탄성계수와 무차원 탄성계수를 구하였다. 고무물성은 네오-후크 모델을 적용하였고 여러 가지 하중상태와 몇 가지 계면 물성치에 대한 고찰을 하였다. 그 결과 계면 물성치와 계면 두께는 코드-고무 복합재료의 비선형성과 유효탄성계수에 영향을 미침을 알수 있었다.

The nonlinearity and high deformability of rubber make accurate analysis of the behavior of cord-rubber composites a challenging task. Some researchers have adopted the third phase between cord and rubber and have carried out three-phase modeling. However, it is difficult to determine the thickness and properties of the interface in cord-rubber composites. In this study, a two-dimensional finite-element method (2D FEM) is used to investigate the effective and normalized moduli of cord-rubber composites having interfaces of various thicknesses; this model takes into account the 2D generalized plane strain and a plane strain element. The neo-Hookean model is used for the properties of rubber, several interface properties are assumed and three loading directions are selected. It is found that the properties and thickness of the interface can affect the nonlinearity and the effective modulus of cord-rubber composites.

키워드

참고문헌

  1. Kim, Y.W., Kim, J.G., 2002, “Measurement of Mechanical Material Properties of Rubber Compounds Sampled from a Pneumatic Tire,” Proceedings of the KSMTE 2002 Spring Annual Meeting, pp.404-409.
  2. Kim, Y.W., Kim, J.G., 2003, “F.E. Analysis of the Radial Tire Inflation Using the Hyperelastic Properties of Rubber Compounds Sampled from a Tire,” Transactions of KSME, Vol.11, No.4, pp.123-134.
  3. Walter, J.C., 1978, “Cord-rubber Tire Composites: Theory and Application,” Rubber Chemistry and Technology, Vol. 51 pp. 524-576. https://doi.org/10.5254/1.3535749
  4. Pidaparti, R.M. and May, A.M., 1996, “A Micromechanical Analysis to Predict the Cord-Rubber Composite Properties,” Composite Structures, Vol. 34, No. 4, pp. 361-369. https://doi.org/10.1016/0263-8223(95)00133-6
  5. Pidaparti, R.M. and Jayanti, S., Henkel, J., El- Mounayri, H., 2001, “Design Simulation of Twisted Cord-Rubber Structure Using ProE/ANSYS,” Composite Structures, Vol. 52, pp. 287-294. https://doi.org/10.1016/S0263-8223(01)00021-6
  6. Rao, S., Daniel, I.M. and Gdoutos, E.E., 2004, “Mechanical Properties and Failure Behavior of Cord/Rubber Composites,” Applied Composite Materials, Vol. 11, pp. 353-375. https://doi.org/10.1023/B:ACMA.0000045312.61921.1f
  7. Paris, A.J., Costello, G.A., 2000, “Bending of Cord Composite Cylindrical Shells,” Journal of Applied Mechanics, Vol. 67, No. 1, pp. 117-127. https://doi.org/10.1115/1.321156
  8. Curtiss, W.W., 1973, “Principles of Tire Design,” Tire Science and Technology, Vol. 2, No. 1, pp. 77-98.
  9. Christensen, R.M. and Lo, K.H., 1979, “Solutions for Effective Shear Properties of Three-Phase Sphere and Cylinder Models,” Journal of the Mechanics and Physics of Solids, Vol. 27, pp. 315-330. https://doi.org/10.1016/0022-5096(79)90032-2
  10. Hashin, Z., 2001, “Thin Interphase/Imperfect Interface in Conduction,” Journal of Applied Physics, Vol. 89, No. 4, pp. 2261-2267. https://doi.org/10.1063/1.1337936
  11. Bertoldi, K., Bigioni, D. and Drugan, W.J., 2007, “Structural Interfaces in Linear Elasticity. Part 1: Nonlocality and Gradient Approximations,” Journal of the Mechanics and Physics of Solids, Vol. 55, No. 1, pp. 1-34. https://doi.org/10.1016/j.jmps.2006.06.004
  12. Ramesh, G., Sotelino, E.D. and Chen, W.F., 1996, “Effect of Transition Zone on Elastic Moduli of Concrete Materials,” Cement and Concrete Research, Vol. 26, No. 4, pp. 611-622. https://doi.org/10.1016/0008-8846(96)00016-6
  13. Ilker Bekir Topcu and Turhan Bilir, 2009, “Anlysis of Rubberized Concrete as a Three-phase Composite Material,” Journal of Composite Materials, Vol. 43, No. 11, pp. 1251-1263. https://doi.org/10.1177/0021998308104226
  14. Pyo, S.H. and Lee, H.K., 2009, “An elastoplastic Damage Model for Metal Matrix Composites Considering Progressive Imperfect Interface Under Transverse Loading,” International Journal of Plasticity, Vol. 26, Issue 1, pp. 25-41. https://doi.org/10.1016/j.ijplas.2009.04.004
  15. Hashin, Z., 2002, “Thin Interphase/Imperfect Interface in Elasticity with Application to Coated Fiber Composites,” Journal of the Mechanics and Physics of Solids, Vol. 50, pp. 2509-2537. https://doi.org/10.1016/S0022-5096(02)00050-9
  16. Stephen Fulton, W., 2004, “Interfacial Microanalysis of Rubber-Tyre-Cord Adhesion and the Influence of Cobalt,” Applied Surface Science, Vol. 221, pp. 69-86. https://doi.org/10.1016/S0169-4332(03)00805-5
  17. Macosko, C.W., 1994, “Rheology: Principles, Measurement and Application,” VCH Publishers, ISBN 1-56081-579-5.
  18. Walter, J.C. and Patel, H.P., 1978, "Approximate Expressions for the Elastic Constants of Cord-Rubber Laminates: Theory and Applications,” Journal of Rubber Chemical and Technology, Vol. 51, No. 3, pp. 710-724.
  19. Yum, Y.J, Son, J.H., Xie, Z. and Youshan, W., 2007, "Mechanical Properties of Three-Phase Cord-Rubber Composite," 11th International Conference on Mechatronics Technology, Ulsan, Korea, Nov.5-8.