DOI QR코드

DOI QR Code

수핵성형술용 형상기억합금(SMA) 액추에이터 와이어의 열처리 조건 변화가 온도제어 파라미터(t1)에 미치는 영향

Influence of Heat Treatment Conditions on Temperature Control Parameter ((t1) for Shape Memory Alloy (SMA) Actuator in Nucleoplasty

  • 투고 : 2010.01.27
  • 심사 : 2010.04.09
  • 발행 : 2010.05.01

초록

차세대 의료기기 시장을 변화시킬 것으로 기대되는 형상기억합금(SMA) 기반의 최소침습용 의료기기는 시술자의 손동작과 같은 유연성과 섬세함을 구현할 수 있는 장점이 있다. 그러나 SMA의 비선형 열전기적 특성으로 인해 SMA 기반 차세대 의료기기 엑추에이터는 자유로운 방향조종 구현이 제한적이고 상용화에 있어서 큰 한계성으로 작용한다. 본 논문은 SMA의 효과적인 온도제어를 위해 전류-온도간의 개방루프 계단응답을 분석하고 1차 미분방정식 해와 비교하여 온도제어에 필요한 파라미터 $t_1$을 도출한 뒤 실험적으로 그 기능을 검증하였다. 또한 $t_1$은 전류를 입력으로 온도를 출력으로 하는 시불변 선형계의 특성함수의 폴(pole)이므로 주파수에 의한 온도제어에 관계된 파라미터인 것으로 나타났다. 본 논문의 결과는 SAM 기반의 차세대 의료기기 액추에이터의 효과적인 위치제어 설계에 응용될 수 있다.

Shape Memory Alloy (SMA) has recently received attention in developing implantable surgical equipments and it is expected to lead the future medical device market by adequately imitating surgeons' flexible and delicate hand movement. However, SMA actuators have not been used widely because of their nonlinear behavior called hysteresis, which makes their control difficult. Hence, we propose a parameter, $t_1$, which is necessary for temperature control, by analyzing the open-loop step response between current and temperature and by comparing it with the values of linear differential equations. $t_1$ is a pole of the transfer function in the invariant linear model in which the input and output are current and temperature, respectively; hence, $t_1$ is found to be related to the state variable used for temperature control. When considering the parameter under heat treatment conditions, $T_{max}$ was found to assume the lowest value, and $t_1$ was irrelevant to the heat treatment.

키워드

참고문헌

  1. Chen Y. C., Lee S. H. and Chen D., 2003, "Intradiscal Pressure Study of Percutaneous Disc Decompression with Nucleoplasty in Human Cadavers," Spine Journal, Vol.28, No.7, pp.661-665. https://doi.org/10.1097/00007632-200304010-00008
  2. Cheol-Woong Kim, 2008, "Guide for Inserting Surgical Appliances into Living Body," Korean Patent, Regist. No. 10-0849228 (23th July).
  3. Cheol-Woong Kim, 2009, "Surgical Appliance for Insertion into in-vivo," Korean Patent, Regist. No. 10-0896750 (30th April).
  4. Sanghaun Kim and Maenghyo Cho, 2007, "Experimental Test and Numerical Simulation on the SMA Characteristics and Behaviors for Repeated Actuations," Transactions of the Korean Society of Mechanical Engineers A, Vol.31, No.3, pp.373-379. https://doi.org/10.3795/KSME-A.2007.31.3.373
  5. Young-Jin Kim, Jong-Ha Chung and Jung-Ju Lee, 2008, "Analysis on the Behavior of the Shape Memory Alloy using Abaqus UMAT," Transactions of the Korean Society of Mechanical Engineers A, Vol.32, No.12, pp.1153-1160. https://doi.org/10.3795/KSME-A.2008.32.12.1153
  6. Dong-Joon Oh, Cheol-Woong Kim, Tae-Young Kim, Ho-Sang Lee and Jay-Jung Kim, 2010, "Evaluation of Thermoelectric Characteristics of Peltier Thermoelectric Module for Increasing Response Velocity in Shape Memory Alloy (SMA) Steering Catheter," Transactions of the Korean Society of Mechanical Engineers B, Vol.34, No.3, pp.301-307. https://doi.org/10.3795/KSME-B.2010.34.3.301
  7. Yun Luo, Takeshi Okuyama, Toshiyuki Takagi, Takamichi Kamiyama, Kotaro Nishi and Tomoyuki Yambe, 2005, "Thermal Control of Shape Memory Alloy Artificial Anal Sphincters for Complete Implantation," Smart Mater. Struct. Vol. 14, pp.29-35. https://doi.org/10.1088/0964-1726/14/1/003
  8. Maria Marony Sousa Farias Nascimento, Carlos Jose de Araújo, Jose Sergio da Rocha Neto, Antonio Marcus Nogueira de Lima, 2006, "Electro Thermomechanical Characterization of Ti-Ni Shape Memory Alloy Thin Wires," Materials Research, Vol. 9, No. 1, pp.15-19. https://doi.org/10.1590/S1516-14392006000100004
  9. Zanotti, C., Giuliani, P., Tuissi, A., Arnaboldi, S. and Casati, R., 2009, "Response of NiTi SMA Wire Electrically Heated," ESOMAT 2009, 06037.
  10. Wang, Z.G., Zu, X.T., Feng, X.D., Zhu, S., Deng, J. and Wang, L.M., 2004, "Effect of Electrothermal Annealing on the Transformation Behavior of TiNi Shape Memory Alloy and Two-Way Shape Memory Spring Actuated by Direct Electrical Current," Physica B : Condensed Matter, Vol. 349, No. 1-4, pp.365-370 https://doi.org/10.1016/j.physb.2004.04.064
  11. Myung-Soon Kim, Seung-Ki Lee, Seung-Woo Na and Sang-Hoon Lee, 1997, "Characterization of Shape Memory Alloy Springs with the Variation of Heat Treatment Conditions, Transaction of the Korean Institute of Electrical Engineers, Vol.46, No.3, pp.445-449.
  12. Kim, T.Y. and Nam, T.H., 2003, "Heat Treatments of Ti-Ni based Shape Memory Alloys," Journal of the Korean Society of Heat Treatment, Vol.16, No.6, pp.349-355.
  13. Smith, J. F., Luck, R., Jiang, Q. and Predel, B., 1993, "The Heat Capacity of Solid Ni-Ti Alloys in the Temperature Range 120 to 800 K," Journal of Phase Equilibria, Vol. 14, No. 4, pp. 494-500. https://doi.org/10.1007/BF02671969
  14. Danny Grant and Vincent Hayward, 1997, "Variable Structure Control of Shape Memory Alloy Actuators," IEEE Systems and Control Magazine, Vol. 17, No. 3, pp. 80-88. https://doi.org/10.1109/37.588180
  15. The Yee H. and Feather Stone Roy, 2007, Frequency Response Analysis of Shape Memory Alloy Actuators, Proc. International Conference on Smart Materials and Nanotechnology in Engineering, Vol. 6423(3), pp.64232J.1-64232J.7
  16. Morgan, N. B. and Broadley, M., 2004, "Taking the Art Out of Smart! - Forming Processes and Durability Issues for the Application of NiTi Shape Memory Alloys in Medical Devices," Proceedings from the Materials & Processes for Medical Devices Conferences, 8-10 Sept, ASM International
  17. Bhattacharyya A., Sweeney L. and Faulkner M. G., 2002, "Experimental Characterization of Free Convection During Thermal Phase Transformations in Shape Memory Alloy Wires," Smart Materials and Structures, Vol.11, No.3, pp.411-422. https://doi.org/10.1088/0964-1726/11/3/312

피인용 문헌

  1. Relationship between Restoring Force and Typical Stroke with SMA Coil Spring in Electrosurgical Knee Wand vol.35, pp.12, 2011, https://doi.org/10.3795/KSME-B.2011.35.12.1301