DOI QR코드

DOI QR Code

유한요소 교호법으로 구한 삼차원 균열 탄성해의 정확성 향상 및 검토

Examination and Improvement of Accuracy of Three-Dimensional Elastic Crack Solutions Obtained Using Finite Element Alternating Method

  • Park, Jai-Hak (Dept. of Safety Engineering, Chungbuk Nat'l Univ.) ;
  • Nikishkov, G.P. (Dept. of Computer Science and Engineering, The University of Aizu)
  • 투고 : 2010.03.09
  • 심사 : 2010.03.31
  • 발행 : 2010.05.01

초록

SGBEM-FEM 교호법이 Nikishkov, Park 및 Atluri 에 의하여 제안되었었다. 제안된 방법을 사용하면 임의 형태의 평면 혹은 비평면 삼차원 균열에 대하여 복합 모드의 응력강도계수를 구할 수 있다. 그러나 현장에서의 적용을 위해서는 이 방법의 정확성 및 신뢰성에 대한 검토가 더욱 필요하다. 따라서 본 논문에서는 응력강도계수에 영향을 주는 주요한 몇 가지 인자를 검토하였다. 그리고 원통의 내부 및 외부에 존재하는 원주방향 표면균열에 대한 응력강도계수를 구하여 기존의 해와 비교하였다. 그 결과 SGBEM-FEM 교호법은 이들 균열에 대하여 정확한 해를 주고 있음을 확인하였다.

An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the abovementioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems.

키워드

참고문헌

  1. Atluri, S.N., 1997, Structural Integrity and Durability, Tech Science Press, Forsyth.
  2. Nikishkov, G.P., Park, J.H. and Atluri, S.N., 2001, "SGBEM-FEM Alternating Method for Analyzing 3D Non-planar Cracks and Their Growth in Structural Components," Comp. Modeling in Engng & Sci., Vol. 2, No. 3, pp. 401-422.
  3. Li, S. and Mear, M.E., 1998, "Singularity-reduced Integral Equations for Displacement Discontinuities in Three Dimensional Linear Elastic Media," Int. J. Fracture, Vol. 93, pp. 87-114. https://doi.org/10.1023/A:1007513307368
  4. Li, S., Mear, M.E. and Xiao L., 1998, "Symmetric Weak-Form Integral Equation Method for Three- Dimensional Fracture Analysis," Comput. Methods Appl. Mech. Engrg., Vol. 151, pp. 435-459. https://doi.org/10.1016/S0045-7825(97)00199-0
  5. Park, J.H. and Park, S.Y., 2007, “Elastic-Plastic Analysis of a 3-Dimensional Inner Crack Using Finite Element Alternating Method,” Transactions of the KSME A, Vol. 31, No 10, pp. 1009-1016. https://doi.org/10.3795/KSME-A.2007.31.10.1009
  6. Park, J.H., 2009, “Analysis of Elastic-Plastic J Integrals for 3-Dimensional Cracks Using Finite Element Alternating Method,” Transactions of the KSME A, Vol. 33, No. 2, pp. 145-152. https://doi.org/10.3795/KSME-A.2009.33.2.145
  7. Newman, J.C. and Raju, I.S., 1981, "An Empirical Stress Intensity Factor Equation for Surface Cracks," Engineering Fracture Mech., Vol. 15, pp. 185-192. https://doi.org/10.1016/0013-7944(81)90116-8
  8. Raju, I.S. and Newman, J.C., 1972, "Stress-Intensity Factors for Internal and External Surface Cracks in Cylindrical Vessels," J. of Pressure Vessel Technology, Vol. 104, pp. 293-298.

피인용 문헌

  1. Modeling and Analysis of Arbitrarily Shaped Three-Dimensional Cracks vol.35, pp.9, 2011, https://doi.org/10.3795/KSME-A.2011.35.9.1091