DOI QR코드

DOI QR Code

Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics

화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향

  • Lim, Ock-Taeck (Dept. of Mechanical and Automotive Engineering, Ulsan Univ.)
  • 임옥택 (울산대학교 기계자동차공학부)
  • Received : 2009.02.16
  • Accepted : 2010.02.20
  • Published : 2010.05.01

Abstract

The HCCI engine is a prospective internal combustion engine with which high diesel-like efficiencies and very low NOx and particulate emissions can be achieved. However, several technical issues must be resolved before HCCI engines can be used for different applications. One of the issues concerning the HCCI engine is that the operating range of this engine is limited by the rapid pressure rise caused by the release of excessive heat. This heat release is because of the self-accelerated combustion reaction occurring in the engine and the resulting engine knock in the high-load region. The purpose of this study is to evaluate the role of thermal stratification and fuel stratification in reducing the pressure rise rate in an HCCI engine. The concentrations of NOx and CO in the exhaust gas are also evaluated to confirm combustion completeness and NOx emission. The computation is carried out with the help of a multizone code, by using the information on the detailed chemical kinetics and the effect of thermal and fuel stratification on the onset of ignition and rate of combustion. The engine is fueled with dimethyl ether (DME), which allows heat release to occur in two stages, as opposed to methane, which allows for heat release in a single stage.

HCCI 엔진은 고효율, 저공해를 실현할 수 있는 차세대 내연기관이다. 그러나 HCCI 엔진이 상용화되기 위해서는 몇 가지 문제점들이 해결되어야 한다. 그 중에서 가장 큰 문제점은 과도한 압력 상승률이 노킹을 발생시키기 때문에 운전영역이 제한되는 것이다. 이번 연구의 목적은 HCCI 엔진에서 압력상승률 저감을 위하여 온도 성층화와 농도 성층화 효과를 조사하는 것이다. 그리고 Multi-zone 모델을 이용한 화학반응 수치해석을 통하여 연소 및 배기가스 특성에 미치는 영향을 알아보았다. 수치해석에서 2 단계 열발생을 가지는 DME와 1단계 열발생을 가지는 메탄을 사용하였다.

Keywords

References

  1. Yamashita, D., Kweon, S., Sato, S. and Iida, N., 2005, “The Study on Auto-ignition and Combustion Process of the Fuel Blended with Methane and DME in HCCI Engines,” Transaction of JSAE, Vol. 36, No. 6, pp 85-90
  2. Sjoberg, M., John E. D. and Cernansky, N. P., 2005, “Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments,” SAE paper 2005-01-0113
  3. Kwon, O. S. and Lim O. T., 2009, "Effect of the Boost Pressure on Thermal Stratification on HCCI Engine Using Multi-Zone Modeling," Trans. of the KSME (B), Vol. 33, No. 3 (accepted) https://doi.org/10.3795/KSME-B.2009.33.4.248
  4. Kumano K. and Iida, N., 2004, ”Analysis of the Effect of Charge Inhomogeneity on HCCI Combustion by Chemiluminescence Measurement,” SAE paper, 2004-01-1902
  5. Luz A.E., Rupley F. and Miller J.A., 1989, “CHEMKIN-II:A FORTRAN Chemical Kinetics Pacage for the Analysis of Gas-Phase Chemical Kinetics,” Sandia National Laboratories Report, SAND89-8009B
  6. Luz A.E., Kee R.J. and Miller J.A., 1988, “SENKIN:A FORTRAN Program for Predicting Homogeneous Gas Phase Chemical Kinetics With Sensitivity Analysis,” Sandia National Laboratories Report, SAND87-8248
  7. Curran, H.J., Pitz, W.J., Westbrook, C.K., Dagaut, P.B., Boettner, J-C and Cathonnet, M., 1998, “A Wide Range Modeling Study of Dimethyl Ether Oxidation,” International Journal Chemical Kinetics, 30-3, pp. 229-241 https://doi.org/10.1002/(SICI)1097-4601(1998)30:3<229::AID-KIN9>3.0.CO;2-U
  8. GRI-Mech3.0, http://www.me.berkeley.edu/gri_mech