DOI QR코드

DOI QR Code

Optimum Design of Offset-Strip Fins

옵셋 스트립 휜 최적 설계

  • Received : 2010.01.12
  • Accepted : 2010.02.16
  • Published : 2010.05.01

Abstract

This paper optimized the design parameters of the offset strip fin in a heat exchanger. To decrease the pressure drop and increase heat transfer, the performance factors such as j/f, $j/f^{1/3}$, and JF, which could be used to estimate the pressure drop and heat transfer simultaneously, were employed as the criteria for optimization. In the present study, STDQAO, PQRSM, and MGA were used for solving the constrained nonlinear optimization problem. The JF factor and heat transfer performance of the optimized offset-strip fin were greater than those of the reference offset-strip fin by 36% and 280%, respectively.

본 연구에서는 옵셋 스트립 휜 열교환기에서 휜 형상에 대한 최적화를 수행하였다. 압력강하량은 감소시키고 열전달량을 증가시키기 위해 이 둘을 동시에 나타낼 수 있는 j/f, $j/f^{1/3}$, JF 등의 성능 인자가 고려되었다. STDQAO, PQRSM, MGA 등의 최적화 기법이 사용되었으며, MGA 를 통해 기존 옵셋 스트립 휜보다 JF 인자는 36%, 열전달 성능은 280% 향상된 최적화된 휜 형상을 제안하였다.

Keywords

References

  1. Vanderplaats, G. N., 1984, Numerical Optimization Techniques for Engineering Design with Applications, McGraw-Hill, New York.
  2. Madsen, J. I. and Langyhjem, M., 2001, “Multifidelity Response Surface Approximations for the Optimum Design of Diffuser Flows,” Optim. Eng. Vol. 2, pp. 453-468. https://doi.org/10.1023/A:1016046606831
  3. Rodriguez, J. F., Renaud, J. E., Wujek, B. A. and Tappeta, R.V., 2000, “Trust Region Model Management in Multidisciplinary Design Optimization,” J. Comput. Appl. Math. Vol. 124, pp. 139-154. https://doi.org/10.1016/S0377-0427(00)00424-6
  4. Hong, K. J., Kim, M. S. and Choi, D. H., 2001, “Efficient Approximation Method for Constructing Quadratic Response Surface Model,” KSME Int. J. Vol. 15, No. 7, pp. 876-888. https://doi.org/10.1007/BF03185266
  5. Park, K. and Moon, S., 2005, “Optimal Design of Heat Exchangers Using the Progressive Quadratic Response Surface Model,” Int. J. Heat Mass Transfer, Vol. 48, pp. 2126-2139. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.023
  6. Fadel, G. M., Riley, M. F. and Barthelemy, J. M., 1990, “Two Point Exponential Approximation Method for Structural Optimization,” Structural Optimization, Vol. 2, No. 2, pp.117-124. https://doi.org/10.1007/BF01745459
  7. Kim, J. R. and Choi, D. H., 2008, “Enhanced Two-Point Diagonal Quadratic Approximation Methods for Design Optimization,” Computer Method in Applied Mechanics and Engineering, Vol. 197, pp. 846-856. https://doi.org/10.1016/j.cma.2007.09.014
  8. Krishnakumar, K., 1989, “Micro Genetic Algorithms for Stationary and Non-Stationary Function Optimization,” Intelligent Control and Adaptive Systems, Vol. 1196, pp. 289-296.
  9. Kays, W. M. and London, A. L., 1984, “Compact Heat Exchangers,” McGraw-Hill, New York.
  10. Yun, J. Y. and Lee, K. S., 2000, “Influence of Design Parameters on the Heat Transfer and Fluid Friction Characteristics of the Heat Exchanger with Slit Fins,” Int. J. Heat Mass Transfer, Vol. 43, No. 14, pp. 2529-2539. https://doi.org/10.1016/S0017-9310(99)00342-7
  11. Webb, R. L. and Kim, N. H., 2005, “Principles of Enhanced Heat Transfer,” Taylor & Francis, New York.
  12. Joo, Y. S., Kong, D. H. and Lee, K. S., 2009, “Thermo-Flow Analysis of Offset-Strip Fins According to Prandtl Number,” J. of SAREK, Vol. 21, No. 6, pp. 340-346.