Photodynamic Therapy for Methicillin-resistant Staphylococcus aureus with High-level Mupirocin Resistance using 630 nm Light-emitting Diode

  • Kwon, Pil-Seung (Department of Clinical Laboratory Science, Wonkwang Health Science University) ;
  • Kim, Jin-Kyung (Department of Microbiology & Vestibulocochlear Research Center, Wonkwang University College of Medicine)
  • Received : 2010.11.05
  • Accepted : 2010.12.30
  • Published : 2010.12.31

Abstract

This study aims to evaluate the effect of Photodynamic Therapy (PDT) against methicillin-resistant Staphylococcus aureus with high-level mupirocin resistance (Hi-Mup MRSA). To examine the antimicrobial effect of photogem-mediated PDT against Hi-Mup MRSA, CFU quantifications, bacteria cell viability tests, and disk diffusion antimicrobial susceptibility tests were evaluated. In addition, one of PDT mechanisms was investigated by accumulating photogem ($10\;{\mu}g/ml$) in Hi-Mup MRSA. Photogem-mediated PDT properly inhibited the colony formation of Hi-Mup MRSA. Viable bacteria decreased greatly after a PDT application with photogem $10\;{\mu}g/ml$ at energy density $15\;J/cm^2$. The diameter of the inhibition zone around susceptible disks increased after PDT. In addition, we confirmed the accumulation of photogem in bacteria through fluorescent images. These results demonstrated that excellent photosensitization of Hi-Mup MRSA can be achieved using photogem with 630 nm LED irradiation. Thus, PDT may make survival Hi-Mup MRSA inactive.

Keywords

References

  1. Barr H, Tralau CJ, Macrobert AJ, Krasner N, Boulos PB, Clark CG; Bown SG. photodynamic therapy in the normal rat colon with phthalocya nine sensitisation. Br J Cancer. 1987. 56: 111-118. https://doi.org/10.1038/bjc.1987.166
  2. Bedwell J, Holton J, Varia D, Macrobert AJ, Bownn SG. In vitro killing of helicobacter pylori with photodynamic therapy. The Lancet. 1990. 335: 1287. https://doi.org/10.1016/0140-6736(90)91361-D
  3. Bertoloni G, Lauro FM, Cortella G; Merchat M. Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells. Biochim Biophys Acta. 2000.1475: 169-174 https://doi.org/10.1016/S0304-4165(00)00071-4
  4. Chabrier-Rosello Y, Foster TH, Perez-Nazario N, Mitra S, Haidaris CG. Sensitivity of Candida albicans germ tubes and biofilms to photofrin-mediated phototoxicity. Antimicrob Agents Chemother. 2005. 49: 4288-4295. https://doi.org/10.1128/AAC.49.10.4288-4295.2005
  5. Chambers HF. Methicillin resistance in Staphylococci: Molecular and biochemical basis and clinical implications. Clin Microbiol Rev ET. 1997. 10: 781-79l.
  6. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing: Seventeenth informational supplement. 2007. M100-SI7. Wayne, PA, CLSI.
  7. Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst. 1998. 90: 889-905. https://doi.org/10.1093/jnci/90.12.889
  8. Foote CS. Type I and Type II mechanism of photodynamic action, in heitz JR and Dow-num KR (eds), Light-activates Pesticides. American Chemical Society, Washinton DC. 2.1987.2-38.
  9. Fuchs BB, Tegos GP, Hamblin MR, Mylonakis E. Susceptibility of Cryptococcus neoformans to photodynamic inactivation is associated with cell wall integrity. Antimicrob Agents Chemother. 2007. 51: 2929-2936. https://doi.org/10.1128/AAC.00121-07
  10. Georgopapadakou NH, Smith SA, Bonner DP. Penicillin binding proteins in a Staphylococcus aureus strains resistant to specific beta-lactam antibiotics. Antimicrob Agents Chemother. 1999. 43: 15-22.
  11. Gois MM, Kurachi C, Santana EJ, Mirna EG; SpolidOrio DM, Pelino JE, Salvador Bagnato V. Susceptibility of Staphylococcus aureus to porphyrin-mediated photodynamic antirnicrobial chemotherapy: an in vitro study. Lasers Med Sci. 2010.25: 391-395. https://doi.org/10.1007/s10103-009-0705-0
  12. Golding PS, King TA, Maddocks L, Drucker DB, Blinkhom AS. Photosensitization of Staphylococcus aureus with malachite green isothiocyanate: inactivation efficiency and spectroscopic analysis. J Photochem Photobial B. 1998.47: 202-210. https://doi.org/10.1016/S1011-1344(98)00224-3
  13. Grinholc M, Szramka B, Kurlenda J, Graczyk A, Bielawski KP. Bactericidal effect of photodynamic inactivation against methicillin-resistant and methicillin-susceptible Staphylococcus aureus is strain-dependent. J Photochem Photobiol B. 2008.90: 57-63. https://doi.org/10.1016/j.jphotobiol.2007.11.002
  14. Hamblin MR, Hasan T. Photodynamic theraphy: a new antimicrobial approach to infectious disease? J Photochem Photobial B. 2004. 3: 436-450. https://doi.org/10.1039/b311900a
  15. Hong SG; Lee J, Yong D, Kim EC, Jeong SH, Park YJ, Choi TY, Uh Y, Shin JH, Lee WK, Ahn JY, Lee SH, Woo GJ, Lee K. Antimicrobial resistance of clinically important bacteria isolated from 12 hospitals in Korea. Korean J Clin Microbiol. 2004. 7: 171-177.
  16. Kim JS, Kim HS, Song WK, Cho HC, Lee KM, Kim EC. Antimicrobial resistance profiles of Staphylococcus aureus isolated in 13 Korean hospitals. Korean J Lab Med 2004. 24: 223-229.
  17. Kim SG, Hong JW, Boo SH, Kim MG; Lee KD, Ahn JC, Hwang HJ, Shin JI, Lee SJ, Oh JK, Chung PS. Combination treatment of Cetuximab and photodynamic therapy in SNU-1041 squamous cancer cell line. Oncology Reports. 2009. 22: 701-708.
  18. Kubin A, Wierrani F, Jindra RH, Loew HG; Grunberger W, Ebermann R, Alth G Antagonistic effects of combination photosensitization by hypericin, meso-tetrahydroxyphenylchlorin (mTHPC) and photofrin II on Staphylococcus aureus. Drugs Exp Clin Res. 1999.25: 13-21
  19. Kwon PS, Jo YK. Photodynamic therapy for methicillin-resistant Staphylococcus aureus using various photosensitizer. J Exp Biomed Sci. 2009. 15: 233-239.
  20. Lee HM, Yong DE, Lee KW, Hong SG, Kim EC, Jeong SH, Park YJ, Choi TY, Uh Y, Shin JR, Lee WK, Lee J, AIm JY, Lee SH, Woo GH. Antimicrobial resistance of clinically important bacteria isolated from 12 hospitals in Korea in 2004. Korean J Clin Microbiol. 2005. 8: 66-73.
  21. Machado AEH. Photodynamic therapy: principles, potential of application and perspectives. Quimica Nova. 2000. 23: 237-243. https://doi.org/10.1590/S0100-40422000000200015
  22. Maisch T. Anti-microbial photodynamic therapy: useful in the future. Laser Med Sci. 2007. 22: 83-91. https://doi.org/10.1007/s10103-006-0409-7
  23. Malamy MH, Horecker BL. Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation. Biochemistty. 1964. 3: 1889-1893. https://doi.org/10.1021/bi00900a017
  24. Mang TS. Lasers and light sources for PDT: past, present and future. Photodiagnosis Photodynamic Therapy. 2004. 1: 43-48. https://doi.org/10.1016/S1572-1000(04)00012-2
  25. Ochsner M. New trends in photo biology of photophysical and photobiological processes in the photodynamic therapy of tumors. Photochem Photobiol. 1997. 39: 1-18. https://doi.org/10.1016/S1011-1344(96)07428-3
  26. Peloi LS, Soares RRS, Biondo CEG, Souza VR, Hioka N, Kimura E. Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. J Biosci. 2008. 33: 231-237. https://doi.org/10.1007/s12038-008-0040-9
  27. Phoenix DA, Sayed Z, Hussain S, Harris F, Wainwright M. The phototoxicity of phenothiazinium derivatives against Escherichia coli and Staphylococcus aureus. FEMS Immunol Med Microbiol. 2003. 39: 17-22. https://doi.org/10.1016/S0928-8244(03)00173-1
  28. Raab O. Ueber die wirkung fluorizierender stoffe auf infusorien. Z Biol. 1900.39: 524-646.
  29. Rodnei RD, Juliana JC, Santos EL, Costa AC, Jorge AO. Comparison of the efficacy of Rose Bengal and erythrosin in photodynamic therapy against Enterobacteriaceae. Lasers Med Sci. 2010. 25: 581-586. https://doi.org/10.1007/s10103-010-0765-1
  30. Tolstykh PI, Stranadko EF, Koraboev UM, Urinov Ala, Tolstykh MP, Terekhova RP, Volkova NN, Duvanskii VA. Experimental study of photodynamic effect on bacterial wound microflora. Zh Mikrobiol Epidemiol Immunobiol. 2001. 2: 85-87.
  31. Tomio L, Redi G, Joli PL, Zorat GB. Hematoporphyrin as a sensitizer in tumor photo therapy: effect of medium polarity on the photo sensitizing efficiency and role of the adminstration pathway on the distribution in normal and tumor bearing rats, in R. Pratesi and CA sacchi (eds), Lasers in photoedicine and photobiology, pringer-Verlag, Berlin. 1980. 76-82.
  32. Wainwright M, Phoenix DA, Laycock SL, Wareing DR, Wright PA. Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus. FEMS Microbiol Lett. 1998. 15: 177-181.
  33. Schmitz FJ, Jones ME. Antibiotics for treatment of infections caused by MRSA and elimination of MRSA carnage. What are the choices? Int J Antimicrobial Agents. 1997. 9: 1-19. https://doi.org/10.1016/S0924-8579(97)00027-7
  34. Stranadko EF, Skobelkin OK, Litvin GD, Astrakhankina TA. Photodynamic therapy of human malignant tumors: a comparative study between photohem and tetrasulfonated aluminum phthalocyanine. Proc SPIE. 1996.2625: 440-448.
  35. Sutherland R, Boon RJ, Griffin KE, Masters PJ. Slocombc B. White AR. Antibacterial activity of mupirocin (pseudomonic acid), a new antibiotic for topical use. Antimicrobial Agents and Chemotherapy. 1985.27: 495-498. https://doi.org/10.1128/AAC.27.4.495
  36. Yun HJ, Lee HW, Yoon GM, Kim SY, Choi S, Lee YS, Choi EC, Kim S. Prevalence and mechanisms of low- and high-level mupirocin resistance in staphylococci isolated from a Korean hospital. J Antimicrob Chemother. 2003. 51: 619-623. https://doi.org/10.1093/jac/dkg140
  37. Yoo JI, Shin ES, Cha JO, Lee JK, Jung YH, Lee KM, Kim BS, Lee YS. Clonal dissemination and mupA gene polymorphism of mupirocin-resistant Staphylococcus aureus isolates from long-term-care facilities in South Korea. Antimicrobial Agents and Chemotherapy. 2006. 50: 365-267.
  38. Udo EE, Jacob LE, Mathew B. Genetic analysis of mcthicillinresistant Staphylococcus aureus expressing high- and low-level mupirocin resistance. J Med Microbiol. 2001. 50: 909-915.
  39. Wainwright M. Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother. 1998. 42: 13-28. https://doi.org/10.1093/jac/42.1.13
  40. Webber J, Herman M, Kessel D, Fromm D. Current concepts in gastrointestinal photodynamic therapy. Ann Surg. 1999. 230: 12-23. https://doi.org/10.1097/00000658-199907000-00003
  41. Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976. 36: 2326-2329.