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Locating Mechanical Damages Using Magnetic Flux Leakage Inspection
in Gas Pipeline System

Jaejoon Kim

Abstract Gas transmission pipelines are ofien inspected and monitored using the magnetic flux leakage method.
An inspection vehicle known as a “pig” is launched into the pipeline and conveyed along the pipe by the
pressure of natural gas. The pig contains a magnetizer, an array of sensors and a microprocessor-based data
acquisition system for logging data. This paper describes magnetic flux leakage (MFL) signal processing used for
detecting mechanical damages during an in-line inspection. The overall approach employs noise removal and
clustering technique. The proposed method is computationally efficient and can easily be implemented. Results are
presented and verified by field tests from an application of the signal processing.
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1. Introduction

Magnetostatic methods are used very widely
for the inspection of ferromagnetic materials
such as steel billets, tank shells and automobile
crank shafts (Blitz, 1991). One of the more
interesting applications of magnetostatic methods
is the inspection of underground natural gas
pipelines. Natural gas is a very important
component of a country’s energy resource base
in US. Unfortunately, most of times, it is
produced at well sites that are far removed from
consumer locations. Consequently natural gas
must be transported in order to be used. The
most common method of transportation is
through steel pipelines that are buried under
ground. The United States has over 300,000
miles of transmission gas pipelines that link
pumping stations with the distribution centers.

The magnetic flux leakage (MFL) method
(Weisweiler et al, 1987 and Mandayam et al.,
1996) is one of the more popular methods used

to detect flaws in gas and oil pipelines. MFL
techniques provide a comprehensive analysis of
metal loss defects, as well as other
discontinuities that could have a detrimental
effect on the pipeline’s operation if they are not
discovered and remedied in a timely manner.
Mechanical damage is one of the largest
causes of failure in gas-transmission pipelines
today. Mechanical forces, such as those caused
by heavy third-party construction equipment, can
deform the cylindrical shape of a pipeline, scrape
away metal coating, introduce notches and cold
work the steel. Cold work, in turn, can locally
change the microstructure and mechanical
properties of steel. The resultant mechanical
damage often remains benign for the operational
life of the pipeline. However, it can also lead to
an immediate or delayed failure. Because
practical pigging frequencies are of the order of
years, in-line inspections can only be used to
detect damage that could lead to a delayed

failure. Nonetheless, having an inspection system
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that can both detect and characterize mechanical
damages could provide pipe industries with an
important tool in its efforts to maintain a safe
and reliable pipeline infrastructure.

In this paper, edge based location approach
applies detecting as possible as small damage
such as mechanical damage and enhancing the
signal-to-noise ratio(SNR) of MFL signals that
are corrupted by several type of noises.

2. Mechanical Damage in Transmission Line

Internal pipeline inspection tools have been
very successful when used to reveal loss of pipe
wall thickness due to corrosion and other causes.
Inspection tools employing magnetic flux leakage
inspection techniques (Ivanov et al., 1998, Lee et
al.,, 2008, and Clapham et al.,, 2008) have proved
capable of locating pipeline irregularities such as
corrosion pitting, mechanical damage,
manufacturing defects, construction defects, hard
spots, bends, and dents in addition to metal loss
due to corrosion. Also, depending on the mass
of the metal, MFL can normally detect features
as circumferential welds, valves, casings, and
sleeves.

Magnetic flux  leakage techniques are
employed as an in-line inspection method to
inspect gas transmission pipelines. MFL
techniques can be used to detect metal loss in
pipelines due to corrosion and gouging. A
schematic diagram of the inspection vehicle is
shown in Fig. 1. The magnetic circuit of
inspection vehicle consists of a pair of high
energy permanent magnets, a backing iron plate,
a pair of steel brushes that establishes contact
with the pipe, and the pipewall itself. A very
high field due to the neodinium-iron-boron
magnets ensures that the pipewall is highly
saturated. Several hall plate sensors are mounted
circamferentially around the pipe to detect
leakage fields that are generated due to defects.
Since the signals are sampled at intervals that
are fractions of an inch apart, the volume of

data generated by each sensor is very large.

Ve [iatn
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Fig. 1 Schematic diagram of a typical pig used for
gas pipeline inspection

Fig. 2 Two dimensional schematic view of on MFL
inspection tool

The types of defects generally in gas
pipelines are classified into two broad classes;
metal loss and mechanical damage. Metal loss
defects usually originate due to corrosion of the
pipewall, where as mechanical damage is caused
mainly by\ third party excavations and natural
forces such as earth movement etc. Mechanical
damage in gas pipelines includes, denting due to
deformation in the cylindrical shape of the
pipeline, metal loss duec to scraping away of
material, and cold working of the metal which is
commonly classified as gouging in pipeline
industries. In many cases, mechanical damage
leads to a delayed catastrophic failure of the
pipeline, where the time between the event
causing the mechanical damage and actual failure
can be as long as months or even years. Fig.
3(a) shows the customary active measurements
obtained from a conventional pig. The signals
due to the two defects of metal loss and
mechanical damage are not clearly distinguish-
able. Fig. 3(b) shows the measurement of the
residual magnetic field around the defects. These
plots show that the field MFL
measurement can be used to distinguish between
mechanical damage and metal loss defect. This
is due to the sensitivity of the residual field to

residual
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Fig. 3 Comparison of MFL signals from mechanical
damage and metal loss defects of identical
dimensions (a) active field measurement (b)

residual field measurement. (Afzal et al.,
1999)

stress distribution around the defect in case of
mechanical damage. It is also possible to observe
that the signals generated by mechanical damage
exhibit very small amplitudes. This is because
mechanical damage causes relatively small
properties of the pipeline
In other word, the MFL signals
generated by these small changes are low in

amplitude.

changes in the
material.

3. MFL Signal Analysis

The edge detection scheme consists of three
stages; filtering, differentiation, and detection. In
the filtering stage, the signals are normalized and
thresholded, in order to remove noise. In this
case, this is achieved by using the Gaussian
filter described in next section. Differentiation

Data Acquisition
q
Thresholding and
Normalization
Location via edges
&
Clustering
Output

Fig. 4 Process flow for proposed approach

highlights the locations in the data where
intensity changes are significant. Finally, in the
detection stage, the defect edges highlighted by
differentiation operator are extracted. In this
approach, edge detection is applied to the
one-dimensional signal from each individual
MFL sensor. After the edge detection process is
completed, a data clustering method is applied to
remove any trends between the sensors in the
circumferential direction. Fig. 4 depicts the
overall process for locating mechanical damages.
3.1 Canny Edge Detection
The purpose of edge detection is to
significantly reduce the amount of data in an
image, while preserving the structural properties
to be used for further data analysis. Canny’s
(1986) aim was to discover the optimal edge
detection algorithm. On the Canny operator, the
parameter definition for an optimal algorithm
consists of three criteria:
1. Detection: A low error rate. Occurring image
edges are not dismissed by the algorithm.
2. Localization: Well localized edges, being on
the same position as the occurring edges.
3. Minimal

marked once, and image noise does not

response: One given edge 1is

create false edges.
For edge detection which is a main step, we
use the approach initially suggested by Shapiro
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Fig. 6 First derivative filter coefficients of the
Canny operator

and Stockman (2001). The edge detection
algorithm runs in 5 separate steps as shown in
Fig. 5.

In this approach, the edge detection is
achieved by convolving the noisy input signal,
s(x), with a function A(x) and marking the edges
as the maxima of the output signal. Canny
shows that the first derivative of a Gaussian in
Fig. 6 forms an efficient approximation of the
optimal filter A(x). The impulse response of a
one-dimensional derivative filter is given by

X2

207

e
h(x) =—— exp(-—) M
[+

In the edge localization, we have assumed that the
values of ¢ in the Gaussian based edge detectors
is known. Finding an optimal value of o is not
straightforward. Therefore, the important problem
is how to determine the appropriate value of ¢ in
a given signal. After convolving the input signal
s(x) with an impulse response A(x), the process is
performed to find the local maxima.

3.2 MFL Signal Enhancement

In many signal processing, we have to
remove some linear trend signal. Since we
process MFL signals, which are collected on one
direction (axial on the pipe), the noise source
can be generated linearly. This part applies to
remove the trend signal with straightforward
concept, which consists of two parts: clustering
and calculating the difference between reference
signal and a given MFL signal.

On clustering signal, the MFL signals are
composed of several distinct subclasses. In our
case, we assumed that there are two different
classes, feature signal and background noise
signal. The problem of finding subclasses in a
set of MFL signals from a given class is called
unsupervised learning. The problem is easiest
when the feature vectors for MFL signals in a
subclass are close together and form a cluster.
The k-means algorithm (Tou and Gonzalez, 1974)
is one of the common methods for unsupervised
approaches. It can wuse a minimum-distance
classifier to separate them. It can be viewed as a
greedy algorithm for partitioning the n signals
into k (in our case, k=2) clusters so as to
minimize the sum of the squared distance to the
cluster centers. Once we partitioned MFL signals
to desired number of clusters, the background
noise signal can be set as a reference signal r(x).
r(x) represents the average of signals contained in
the second cluster (noise signals). The reference
signal is applied to the output g(x) of the edge
detector as follows,

2O =r@-g (), i=12..m. @

where m is number of sensors surrounding pipe
in the circumferential direction.

Three types of data sets were used for
mechanical damages. The overall layout for data
sets is shown in Fig. 7. Data set 1 used 96
sensors for each axial direction and data set 2
and 3 used 32 sensors for row 1 and row 2
respectively as  indicated in Fig. 7. The
resolution of pixel for axial direction is 100
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100 ft

Fig. 7 Experimental data set layout

samples/ft and circumferential direction is 24"
diameter and 180 degree scanning. The total
length of circumference 37.6991" and 1 pixel of
circumference 0.032725 ft are used. Fig. 8 shows
the results from the application of the proposed
method. It was observed that the performance of
this technique is reliable on MFL signal of
mechanical damages. For 1-D signal implementa-
tion process, Fig. 9 shows the one of sensors on
data set 3.

Fig. 9 1-D signal description for sensor location 20
on data set 3: normalized signal and defect
location via edge detection (x-axis: samples,
y-axis: magnitude)

(©

Fig. 8 Locating and fitering results of normalized signal (first column), defect location via edge detection
(second column), detrended output (third column): (a) data set 1, (b) data set 2, and (c) data set 3.
(From vertical line of plots, each axis means magnitude, channels and samples, respectively)
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4. Conclusions

Locating and enhancing mechanical damage
signals in MFL data from gas pipeline inspection
has been investigated. The proposed signal
processing scheme utilizes edge detection and
clustering methods to extract low SNR
mechanical damage signals from MFL data. The
approach involves identifying factors that corrupt
MFL data, and then devising techniques to
suppress them. In this paper, three data sets were
used for validating the edge based approach. As
we can see in the results from Fig. 8 and 9, the
incredibly enhanced. The
proposed approach is simple and it is easy to
implement and obtain the good performance with
optimal filter coefficients. This paper can be
applied to mechanical damage data from field

MFL signals are

tests and very promising results were obtained.
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