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Evaluation of Elastic Properties of Anisotropic Cylindrical Tubes
Using an Ultrasonic Resonance Scattering Spectroscopy

Jin-Yeon Kim*T and Zheng Li**

Abstract An ultrasonic resonance scattering spectroscopy technique is developed and applied for reconstructing
elastic constants of a transversely isotropic cylindrical component. Immersion ultrasonic measurements are
performed on tube samples made from a boron/aluminum composite material to obtain resonance frequencies and
dispersion curves of different guided wave modes propagating in the tube. Theoretical analysis on the acoustic
resonance scattering from a transversely isotropic cylindrical tube is also performed, from which complete
backscattering and resonance scattering spectra and theoretical dispersion curves are calculated. A sensitive change
of the dispersion curves to the clastic properties of the composite tube is observed for both normal and oblique
incidences; this is exploited for a systematic evaluation of damage and elastic constants of the composite tube
samples. The elastic constants of two borow/aluminum composite tube samples manufactured under different
conditions are reconstructed through an optimization procedure in which the residual between the experimental and
theoretical phase velocities {dispersion curves) is minimized.

Keywords: Ultrasonic Spectroscopy, Elastic Constants Reconstruction, Composite Materials, Resonance Acoustic
Scattering, Inverse Problem

1. Introduction

Cylindrical rods and tubes made from
unidirectional fiber-reinforced composite materials
are often wused as an important structural
component that carries a high axial load while
performing their own functionalities. Efforts made
in recent yecars have successfully led to the
development of various processes to fabricate
composite structures in a desired, arbitrarily-
curved shape. The temperature profiles and
critical pressures in the fabrication processes are
the primary parameters that influence significantly
the quality of composite products (Mileiko and
Khvostunkov, 1995). Therefore, these parameters
need to be optimized to achieve a desired
product quality in terms of the fiber/matrix

interface properties and the amount of inherent
damage. For example, when such parameters are
chosen appropriately, fiber breakage that occurs
during the consolidation process is uniformly
distributed, thus resulting in a minimum local
damage concentration (Mileiko and Khvostunkov,
1995). The performance of such a composite
fabrication process may be evaluated from the
quality and properties of composite products from
the process and the ultrasonic nondestructive
evaluation (NDE) methods can be used for this
purpose.

When the immersion ultrasonic technique is
employed, the associated acoustic scattering
problem needs to be analyzed for a quantitative
evaluation. The acoustic scattering by an elastic
cylindrical shell or tube has been a topic of
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significant attention in many areas including
underwater acoustics and NDE. Most of the

previous

investigations are concerned with

scattering of acoustic waves by isotropic
cylinders and shells. However, many engineering
components are either anisotropically reinforced
or can possess a certain degree of anisotropy
originated from the manufacturing process.

Examples  include fiber-reinforced

axially
composite cylindrical shells and solid elastic rods
that are manufactured from an extrusion process.
These are the examples of cylindrical
components that have the transverse isotropy.
Honarvar and Sinclair (1996; 1998) studied the
scattering of obliquely incident acoustic waves
by a transversely isotropic solid cylinder, and
examined the effect of changes in elastic
constants on the resonance frequencies of the
cylinder in order to material
properties. Niklasson and Datta (1998) analyzed

the scattering of elastic waves by a transversely

characterize

isotropic cylindrical inclusion in an elastic solid
with another transverse isotropy. Experimental
techniques for measuring acoustic resonance of
immersed cylindrical objects have been well
established (Ripoche et al., 1985; De Billy, 1986;
Li and Ueda, 1989).

In this
scattering spectroscopy technique is developed to
characterize  the

paper, an ultrasonic resonance

elastic  properties of an
anisotropic cylindrical component. An analysis of
the associated acoustic scattering problem is
conducted. Ultrasonic measurements are also
performed for boron/aluminum composite tube
samples manufactured under two  slightly
different fabrication conditions. The dispersion
curves for elastic waves in the tube are obtained
from the theoretical and experimental resonance
frequencies in resonance backscattering spectra.
The objective of the present research is to
develop an experimental procedure for the
reconstruction of the elastic constants from the
theoretical and experimental dispersion curves.
The present technique may serve as a useful tool

to examine the effects of fabrication conditions

on the elastic properties of the composite
products.

2. Ultrasonic Experiment

Cylindrical tube from a

boron/aluminum

samples made
unidirectional  fiber-reinforced
composite are used in the experiment. The tubes
are fabricated such that the fiber direction of the
boron/aluminum composite coincides with the
cylindrical axis of the tube; samples are thus
transversely  isotropic with respect to the
cylindrical axis. Two samples with a nominal
fiber volume fraction of 20% are prepared in the
process similar to the hot isostatic pressing of
plasma sprayed blanks (Mileiko and Khvostunkov,
1995) under different fabrication conditions to
investigate the effects of these conditions on the
anisotropic elastic properties of output composite
tubes. The diameter of boron fibers is about 76
um. The outer radius of the composite tubes is
1.41 cm, the thickness 0.20 cm, and the length
lightly
polished to remove any roughness produced

about 20 cm. Sample surfaces are
during the manufacturing process.
setup for the

measurement (in the pitch-catch mode) of normal

An experimental bistatic
and oblique scattering signals is shown in Fig. 1.
The composite tube sample is immersed in a
water tank and insonified with a broadband
focus ultrasonic transducer (T in Fig. 1). The
scattering signals are captured with a broadband
ultrasonic (unfocused) transducer (R1 or R2 in
Fig. 1). Both the transmitter and receiver have a
center frequency 1 MHz and a frequency band
0.4-1.7 MHz. The diameter of the transducers is
38.0 mm. The angle of oblique incidence is 9°%
this angle is determined such that both quasi-
Lamb and quasi-SH guided waves are efficiently
and simultaneously excited. As shown in Fig. 1,
the resonance scattering signals are measured
using the transducer R2 which is placed about
3 cm away from the point of insonification
1985), while backscattering
(specular reflection) signals are measured using

(Ripoche et al,
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Fig. 1 Experimental setup for measuring
amplitudes and  directivities  scattering

signals at angle of « in the bistatic mode
(a) and sample geometry (b)

the transducer R1. The short pulse technique (De
Billy, 1986) is employed to obtain broadband
backscattering and resonance scattering spectra.
Then, the scattering amplitudes at different
rotation angles are measured using a motor
driven control system that allows for a precise
rotational positioning of the receiving transducers
around the tube sample. The order (n) of each
resonance mode shown in the resonance spectra
is determined from the number of petals within
180° in the amplitude response to tone-burst
excitation (Ripoche et al,, 1985). Duration of the
tone-burst signals was 120 psec.

To compensate the frequency response of
both the transmitting and receiving transducers,
the procedure of Li and Ueda (1989) is usecd.
Backscattering spectra of a steel wire with
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Fig. 2 Typical time domain backscattering signal
from the composite tube (incident angle=9°)

0.2 mm diameter are measured using the same
transducer pairs for both the normal and oblique
(9% incidences. Then, the reference spectra for
the normal and oblique incidences are calculated
by dividing the measured spectra with theoretical
ones. Every measured spectrum is corrected by
its corresponding reference spectrum. Fig. 2
illustrates a time domain backscattering signal
from the boron/aluminum tube. The specular
reflection and subsequent reemission signals from
numerous helically-propagating elastic waves are
observed as indicated by arrows in Fig. 2.

3. Theory
3.1 Scattering Analysis

Consider a transversely isotropic cylindrical
tube with its axis of rotational symmetry
coincident with the z-axis in the cylindrical
coordinate system. The constitutive relation for
such a material can be written as

o] [Gn Ca Gy 0 0 0 s,

0-99 C!Z Cll Cl} 0 0 0 8.96’

o-zz CB C13 C33 0 0 0 €zz

s 1710 0 o0 ¢, o 0 (D
ol 10 0o 0o o c, 0 ’e

& —

o 6 0 0 0 0 gi?g_lz.). Yo

where o,; (ij=r,0,z) is the stress tensor and ¢

and v, are the normal and engineering shear
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components of the strain tensor; C; denotes the
clastic constants in the contracted notation; five
of them are independent as in eqn.(1). The
cylindrical tube with density p and outer and
inner radii ¢ and b is immersed in a fluid of
bulk modulus A; and density p;, and the tube
contains another fluid (air) of bulk modulus A,
and density p,.

A plane time-harmonic acoustic wave
incident on the cylindrical tube at an oblique

angle o (Fig. 1) is expressed as

p. =P &,i"J, (k.r)cos(nd) exp(ik,z) )
n=0
where  k, =k;coser, k,=k;sina, e,=1 for

n=0 and ¢, =2 for n>0; kf(=w/cf) is the
wavenumber associated with the sound speed c;
(= \/W ) of the surrounding fluid and J, (z)
is the first kind Bessel function of order n. The
time dependence exp(—iwt) is omitted for
brevity of expression. The scattered acoustic
waves that satisfy the radiation condition can be
written as

p. =P &,i"4,H" (kr)cos(nd)exp(ik,z) (3)
n=0

where A, is the scattering coefficient to be
determined conditions and
HYz) is the first kind Hankel function of
order n. The acoustic field in the fluid inside the

tube is

from boundary

p. =R &,i"K,J, (klrycos(nf) exp(ikiz) (4)

n=0
where k' =k,cosa’, k =kssine’, k(=w/c,)
is the wavenumber associated with the sound
speed ¢, (=+/A,/p,) of the fluid and K, is an
unknown coefficient. The refraction angle o is

determined from the generalized Snell's law such
that k, =k, and therefore,

z 0

a’=sin"'(ca/cf sina) 5)

Likewise, the z-component wavenumbers of all
associated elastic waves in the tube should be
identical to that of the incident wave (k,) again
according to the generalized Snell's law.

Using the propagation constants and the
formal solutions presented in Appendix, the
potentials for elastic waves in the tube are
represented

®= i[BnJ"(K‘ 1+ CY, (k) +D,J, (k1) + E.X, (x,r)|cosnd exp(ik.z) (6)
W= 3188, () +5.CY, )+ 5,00, () + S E T s leombexpit2) (7)
I = 3 [F,J, (x,0) + G, Y, (x,) Jsin n8 exp( ik, 2) ®)
where B, C,, D, E, F, and G, are
unknown coefficients to be determined from
boundary conditions. Note that the second kind
Bessel function (¥, (z)) is introduced to describe
the elastic wave motion in the tube thickness.
The quasi-P (longitudinal) (®) and quasi-SV
(vertically polarized shear) (¥) waves are
coupled with each other but they are uncoupled
with the quasi-SH (horizontally polarized shear)
(IT) wave. The quasi-P and —SV waves forms
guided waves analogous to the Lamb waves in a
flat elastic plate (Gaunaurd and Werby, 1990)
while the quasi-SH waves are analogous to the
SH waves.

The boundary conditions on the outer tube
surface (r=a) are the continuity of normal
displacement and normal stress, and zero shear

stresses:
o, =—p+p)),, (10)
T, =l =0 (1D

for 0 < 0 < 2. Those on the inner tube surface

(r=>=) are
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_1 &

o= a ] 12
ol ==Pl., 13
Torlyy =Tl =0 14

for 0 <6 < 2n. Substituting displacement and
stress fields obtained from eqns. (1)-(4), eqns.
(6)-(8) and the equations of motion for the
exterior and interior fluids and the tube into the

boundary conditions eqns. (9)-(14) yields a
system of linear equations with unknown
coefficients {4,, B,, C,, D,, E,, F,, G, K,}.

The far-field scattering field can be written
(Gaunaurd and Werby, 1990).
pxpe ™ 250 4 cosmomreo [ 1 ) (15)

iﬂk/" 20

The scattering form function f.{#) in egn. (15)
contains all the information on the acoustic
properties of the scattering object. In particular,
the backward and forward scattering form
functions f_{7x) and f_{(0) are used in the
target characterizations since none of the normal
modes vanishes due to their angle dependence
(cosn8). The scattering form function is the sum
of modal scattering form functions, that is,

fw(9)=if,,(9) (16)
where
£,6)= ﬁ%m cos(16) an

3.2 Reconstruction of Dispersion Curves

A direct evaluation of the dispersion
characteristics of leaky elastic guided waves
propagating in the circumferential direction in a
fluid-loaded tube is very difficult due to the
highly transcendental nature of the characteristic
equations. However, the dispersion curves can be
reconstructed from the resonance frequencies of

the tube appearing in the backscattering signal

{or in the modal backscattering form functions).
To extract resonance frequencies from the modal
scattering form functions, nonresonant contribu-
tions (the background), have to be known. The
nonresonant contributions can be, in general,
approximated with a relevant impenetrable
scatterer, e.g., hard and soft scatterers for thick
and very thin shells. Several models have been
proposed especially for the shells that are neither
thick nor thin and thus those fundamental
backgrounds are not applicable (Choi et al., 1997;
Yoo et al, 1998; Gaunaurd and Werby, 1990;
Werby and Gaunaurd, 1986; Gaunaurd, 1992;
Veksler, 1992). Recently exact backgrounds of
cylindrical and spherical shells
obtained based on the use of an absorbing
scatterer (Choi et al., 1997; Yoo et al,, 1998). On
the other hand, it should be noted that,
different models, the
background of a scatterer is independent of its
elastic property of the object but depends only
on the loading effects of the surrounding fluid.
It can be shown that the background coefficient
for the transversely isotropic tube is identical to
that for an isotropic tube with the same density
and thickness (Yoo et al., 1998):

have been

commonly in these

0 = BP0V, ka) - (ka) T, (k,a)

" T kDH (ko) - FOOH,Ga) 0D

where F;;L)(O) denotes the zero frequency limit
of modal accelerance of the  equivalent liquid
shell and its expression is given in(Yoo et al,
1998). The resonance form function for the n-th
order normal mode is

2

f:"(e»:—J”% (4, ~ 4™)cos(n6)| (19)

Using this, resonances of elastic waves
appearing in the modal backscattering form
functions can be isolated and characterized. Once
the resonance frequency in the n-th order partial
scattering form function (in terms of (k.a),) is
obtained, the phase velocity of the wave mode
that produces the resonance can be calculated by
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Fig. 4 Dispersion curves for propagating waves

excited by normally incident acoustic wave

Table 1 Elastic constants (GPa) and density (kg/m®) of materials

Material Cn Cz Ci Cs Cu Density
Boron/aluminum composite (theoretical) 142.1 71.1 66.4 2194 37.1 2738
Material A Density
Water 2.16 1000
Air 0.00013 1.2
the following formula for a given incident angle waves propagate only in the circumferential

(a):

¢, =c, I\In/k.a),] +sin’ o (20)

4. Results and Discussion

Numerical calculations have been performed
to characterize dispersive characteristics of the
elastic waves in the boron/aluminum cylindrical
tube and to identify the resonance modes in the
The elastic
properties of the composite tube and those of the
water and the air used in the calculation are
presented in Table 1. The higher order Bessel
functions (up to »=125) are calculated using the
commercial software Mathematica”.

The

modes for the normal incidence (a=0°) are

experimental  results.

nominal

dispersion curves of resonant

wave

shown in Fig. 3. The modes of wave
propagation shown as trajectories of the
resonance  frequencies are  marked. The

fluid-borme Sholte-Stoneley and quasi-Lamb wave
modes are observed. Note that all these guided

direction. Due to the curvature of the tube, the
phase velocity of the Sy mode in the low
frequency limit does not remain finite.

The dispersion curves for 9° incidence are

shown in Fig. 4. The behavior of the
Sholte-Stoneley wave mode remains the same as
in the normal incidence case due to its

fluid-borne nature. The guided waves excited by
the obliquely (9°)
propagate along helical paths in the cylindrical
tube. The additional quasi-SH wave modes
(Maze et al., 1985; Conoir et al., 1993) (marked
SH,) are also observed. The SH wave modes

incident acoustic wave

can be wuseful to measure -elastic properties
and/or material damage in the axial direction.
The shift of dispersion curves due to the oblique
excitation is noted. The repulsion of dispersion
curves of the Sholte-Stoneley and A, modes in
the low frequency region is observed (marked
with 1994):  the
dispersion curves for a fluid-loaded elastic object

arrows) (Uberall, et al.,
do not cross. The repulsions between the Lamb

and SH waves as well as between different
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Fig. 5 (a) Backscattering, background and (b)
Complete resonance form functions for
oblique (9°) incidence

Lamb waves are also seen in Figs. 3 and 4.

In Fig. 5, the theoretical backscattering and
resonance form functions for 9° incidence are
shown. Note that the theoretical curves are
calculated using the material properties shown in
Table 1. Referring to the dispersion curves in
Fig. 4, the number of partial waves required to
calculate the these spectra is N> k. Strong
resonances of the Ay Lamb wave are seen in the
low frequencies. The complete resonance form
function is obtained by subtracting the
background from the backscattering form
function as shown in Fig. 5(b).

The calculated
compared with experimental ones for the two

resonance  spectra  are
samples in Figs.6 and 7. Some resonances
frequencies of quasi-SH and Lamb waves are
indicated. It is known that elastic properties of a
composite tube are significantly influenced by
the fabrication

conditions. In general, the

backscattering spectra from the theory and
experiment are in good agreement. The Sholte-
Stoneley wave resonances are not clearly seen in
the experimental resonance spectra because of
their high radiation damping in fluid. The
downward shifts of resonance frequencies are
noted in these figures. It is not easy to track the

exact correspondence between theoretical and

(5]
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Fig. 6 Comparison of resonance spectra from
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Fig. 7 Comparison of resonance spectra from
theory with those from experiments for
different samples (scattering for incident
angie 9°)

resonance in these

experimental frequencies

spectra. Nevertheless, once the order n of each
resonance mode is identified from the rotational
velocity (and the
propagation mode) of the associated elastic wave

measurements, the phase
can be determined using eqn. (20).

In Figs.8 and 9, the resonance frequencies
identified from the tone-burst experiments are
compared with those from the numerical
calculations. Shifts of the resonance frequencies
are clearly seen in these figures. Figure 8 shows

that resonance frequencies for sample #2 shift
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Table 2 Reconstructed elastic constants (GPa) of the two composite tube samples

Material Cn Ciz Ci Css Cu
Sample #1 128.8+3.0 64.7+1.9 60.1£0.8 209.7+7.4 33.7:0.9
Sample #2 132.042.1 64.5+2.2 60.3+1.8 211.8+6.8 354122

less than those for sample #1. Assuming that the
manufacturing damage reduces the stiffness and
the resonance frequencies of the tube, it can be
said that the sample #2 is less damaged than the
other in the basal plane. Also, in Fig. 9 for the
oblique incidence, it is observed that sample #2
exhibits a less downward shift of the resonance
frequencies than the sample #1. Since elastic
constants are related directly to resonance
frequencies, they can be reconstructed from
resonance frequencies (Honarvar and  Sinclair,
1996; 1998). A reconstruction method has been
developed that uses the dispersion curves of
multiple obtained from the
ultrasonic measurements as shown in Figs. 8 and
9. The
performed by solving a multi-variate optimization
problem in which the sum of square errors

wave modes

inversion of the elastic constants is

between experimental and theoretical dispersion
curves is minimized (Kim and Rokhlin, 2009):

Min Y (e5% () =} (C,m) @

The reconstruction is based on the guided wave
dispersion curves measured from the experiment
and predicted by the theoretical model. The
experimentally determined guided wave velocities
for  different
reconstruction

used in the
The  optimization
algorithm updates the five elastics until the error
The
simultaneous use of dispersion curves obtained

modes are
procedure.
function in eqn. (21) is minimized.
from normal and oblique scattering measurements
offers a systematic method for assessing the
damage (or elastic constants) both in the lateral
and axial directions. The selection of modes is
important in that the excited modes should be
measurable in the frequency range and they
should be sensitive to the particular damage or
elastic constants of interest. In Table 2, the
reconstructed elastic constants of the two samples
(an average from three measurements) together
with maximum error ranges are shown.
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5. Summary

An ultrasonic resonance scattering spectro-
scopy technique is developed and applied for
quantitative evaluation of elastic constants of a
transversely  isotropic  cylindrical component.
ultrasonic
performed on tube samples made from

boror/aluminum composite material to obtain

Immersion measurements are

resonance frequencies and dispersion curves of
different elastic guided wave modes propagating
in the tube. The theoretical analysis is performed
on the acoustic resonmance scattering from a
transversely isotropic cylindrical tube. For two
composite tube samples fabricated under different
conditions, elastic constants are reconstructed
using the experimental and theoretical dispersion
curves through an optimization procedure in
which the residual between experimental and
theoretical phase velocities of different guided
wave modes is minimized. A sensitive change of
the dispersion curves to the elastic properties of
the tube is observed for both normal and oblique
incidences and therefore the developed method
can be used for evaluating damage or elastic
constants of the composite tube and shell
samples.
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Appendix

The elastic displacement vector in the
cylindrical coordinate system can be represented
by three scalar potentials, @, ¥, and II that

satisfy  scalar wave
Feshbach, 1953),

equation (Morse  and

W= VOHIV XV X(W2)+v x{IT2)  (Al)

where z is the unit vector in z-direction. The
constant ! has the dimension of length and is
introduced for equidimensionality, and is set to
be 1=k L.

In order to obtain propagation constants

(wavenumbers) in r-direction for propagating
wave modes, the potentials are assumed in the
following forms,

® =B, X, (xr)cos nBexpli(k,z - wt}] (A2)
¥ =C, X, (kr)cos nbexpli(k,z - 0t)] (A3)
Il = D, X, (xr)sin nBexpli(k,z - w1)] (A4)

where X, denotes the relevant kind of Bessel
functions of order ».  Substituting eqns.
(A2)-(A4) into the equations of motion for
transversely isotropic solid yields the Chrstoffel
matrix (Auld, 1973) for the quasi-P and -8V
waves:

P& —C (G, +2CIE e ~Ck ~(C=G,=CR |
’kz{p‘”z "Csal‘f S (ON +2C44,)K2} KZ{P“’Z 'C«KZ (G~ G5~ 44)"’:2

(AS)

Two roots «;, and k, {so to say &, >k;) of

eqn. (A5) correspond to the wavenumbers of the
quasi-P and quasi-SV waves, respectively. Then,
the coupling coefficient is

e - Cuxty ~ (€ + 200K
Y Jp@? —Couk? —(Cp ~ Gy —2C, )KL, |

(A6)

Therefore, the potentials have the following
forms

©

@ =Y[B,X, (k) + C, X, (x,7))cos bexplitk.z— ] (A7)

n=0
= i[slB“X”(Klr) +5,C, X, (x,1)|cosnbexplitkz - 0] (A8)

n={)
The characteristic equation for the quasi-SH

wave is

Cu-Ce ;CH K% +Cukl —po® =0 (A9)

which gives wavenumber k; and the potential in

the following form

11=3'D, X, (k,)sinnbexplitk,z—on] (A1)
n=)



