DOI QR코드

DOI QR Code

Preparation of nanosized NiO powders by mixing acid and base nickel salts and their reduction behavior

Ni 산성염과 Ni 염기성 염의 혼합에 의한 나노 NiO 분말 제조 및 이의 환원 특성

  • Received : 2010.10.19
  • Accepted : 2010.12.10
  • Published : 2010.12.31

Abstract

Nanosized NiO powder was prepared by mixing an acid nickel salt and a base nickel salt and their reduction behavior was studied. Ni formate was employed as an acid salt and nickel hydroxide and basic nickel carbonate as base salts. One equivalent acid salt was mixed with 9 equivalent base salt. The mixture of the formate and the carbonate produced ~100 run spherical NiO powder by heat treatment at $750^{\circ}C$/2 h, but the mixture of the formate and the hydroxide gave rise to ~100 nm pseudo spherical NiO powder by heat treatment at $600^{\circ}C$/2 h and grew fast to give pseudo cubic crystals of 100~600 run by heat treatment at $750^{\circ}C$/2 h. Reduction by hydrogen gas proceeded much faster for the one with the hydroxide than that with the carbonate to give porous body with well grown necks. Their behavior was studied by analysis of TG/DSC, XRD, and SEM.

나노 크기의 NiO 분말을 Ni 산성염과 Ni 염기성염을 혼합하여 제조하는 방법에서 원료가 생성되는 NiO와 이의 환원으로 생성되는 Ni 결정 특성에 미치는 영향을 연구하였다. 산성염으로는 Ni formate를 염기성염으로는 수산화 Ni과 염기성 Ni 탄산염을 사용하였다. 혼합비는 산성염 1당량에 염기성염 9당량을 사용하였으며, 탄산염을 사용한 경우 $750^{\circ}C$/2 h 하소에서도 ~100 nm의 구형의 NiO 분말을 얻었으며, 수산화 염을 사용한 경우는 $600^{\circ}C$/2 h에서는 ~100 nm의 유사 구형의 NiO가 생성되나, $750^{\circ}C$ 열처리에서는 100~600 nm의 유사 입방체 분말을 얻었다. 수산화 염을 사용한 경우에는 탄산염을 사용한 경우에 비하여 수소가스에 의한 환원이 훨씬 빠르게 진행되어 necking이 일어나며 소결이 이루어져 다공체를 형성하였다. 이들 특성을 TG/DSC, XRD, SEM으로 분석하였다.

Keywords

References

  1. J.M. Thomas and W.J. Thomas, Principles and Practice of Heterogeneous Catalysts, New York, VCH (1997).
  2. S. Berchmans, H. Gomathi and G.P. Rao, "Electrooxidation of alcohols and sugars catalysed on a nickel oxide modified glassy carbon electrode", J. Electroana. Chem. 394 (1995) 267. https://doi.org/10.1016/0022-0728(95)04099-A
  3. B. Alcock, L. Baozhen, J.W. Fergus and L. Wang, "New electrochemical sensors for oxygen determination", Solid State Ionics 53 (1992) 39. https://doi.org/10.1016/0167-2738(92)90362-S
  4. F. Tietz, F.J. Dias, D. Simwonis and D. Stover, "Evaluation of commercial nickel oxide powders for components in solid oxide fuel cells", J. Euro. Ceram. Soc. 20 (2000) 1023. https://doi.org/10.1016/S0955-2219(99)00271-X
  5. X. Deng and Z. Chen, "Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance", Mater. Lett. 58 (2004) 276. https://doi.org/10.1016/S0167-577X(03)00469-5
  6. F. Porta, S. Recchia, C. Bianchi, F. Confalonieri and G. Scari, "Synthesis and full characterisation of nickel(II) colloidal particles and their transformation into NiO", Colloids Surf (A):Physicochem Eng Aspects 155 (1999) 395. https://doi.org/10.1016/S0927-7757(99)00019-9
  7. X. Xin, Z. Lu, B. Zhou, X. Huang, R. Zhu, X. Sha, Y. Zhang and W. Su, "Effect of synthesis conditions on the performance of weakly agglomerated nanocrystalline NiO", J. Alloys and Compd. 427 (2007) 251. https://doi.org/10.1016/j.jallcom.2006.02.064
  8. L. Xiang, X.Y. Deng and Y. Jin, "Experimental study on synthesis of NiO nano-particles", Scripta Mater. 47 (2002) 219. https://doi.org/10.1016/S1359-6462(02)00108-2
  9. X.M. Liu, X.G. Zhang and S.Y. Fu, "Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors", Mater. Res. Bull. 41 (2006) 620. https://doi.org/10.1016/j.materresbull.2005.09.006
  10. C.-J. Li, X.-X. Huang, Y. Shi and J.-K. Guo, "Preparation and characteristics of nanocrystalline NiO by organic solvent method", Mater. Lett. 51 (2001) 325. https://doi.org/10.1016/S0167-577X(01)00312-3
  11. B. Malecka, A. Malecki, E. Drozdz-Ciesla, L. Tortet, P. Llewellyn and F. Rouquerol, "Some aspects of thermal decomposition of $NiC_2O_4{\cdot}2H_2O$", Thermochim. Acta 466 (2007) 57. https://doi.org/10.1016/j.tca.2007.10.010
  12. Y. Wu, Y. He, T. Wu, T. Chen, W. Weng and H. Wan, "Influence of some parameters on the synthesus of nanosized NiO material by modified sol-gel method", Mater. Lett. 61 (2007) 3174. https://doi.org/10.1016/j.matlet.2006.11.018
  13. Q. Li, L.-S. Wang, B.-Y. Hu, C. Yang, L. Zhou and L. Zhang, "Preparation and characterization of NiO nanoparticles through calcination of malate gel", Mater. Lett. 61 (2007) 1615. https://doi.org/10.1016/j.matlet.2006.07.113
  14. Y. Wang, C. Ma and X. Sun, "Preparation of nanocrystalline metal oxide powders with the surfactant-mediated method", Inorg. Chem. Commun. 5 (2002) 751. https://doi.org/10.1016/S1387-7003(02)00546-4
  15. T. Sreethawong, S. Chavadej, S. Ngamsinlapasathian and S. Yoshikawa, "A modified sol-gel process-derived highly nanocrystalline mesoporous NiO with narrow pore size distribution", Colloids Surf (A): Physicochem. Eng. Aspects 296 (2007) 222. https://doi.org/10.1016/j.colsurfa.2006.09.048
  16. D.-S. Cheong, D. H. Yun, S. H. Park and C.-S. Kim, "A simple way to prepare nanosize NiO powder by mixing acidic Ni compound with basic Ni compound", J. Kor. Ceram. Soc. 46 (2009) 592. https://doi.org/10.4191/KCERS.2009.46.6.592
  17. A. Agrawal, V. Kumar, B.D. Pandey and K.K. Sahu, "A comprehensive review on the hydro metallurgical process for the production of nickel and copper powders by hydrogen reduction", Matre. Res. Bull. 41 (2006) 879. https://doi.org/10.1016/j.materresbull.2005.09.028
  18. B. Jankovic, B. Adnadevic and S. mentus, "The kinetic analysis of non-isothermal nickel oxide reduction in hydrogen atmosphere using the invariant kinetic parameters method", Thermochim Acta 456 (2007) 48. https://doi.org/10.1016/j.tca.2007.01.033
  19. C.-S. Kim, D.-S. Cheong and S.-M. Kang, "A study on the growth behavior of nano NiO crystals synthesized by a solid state reaction", J. Kor. Cryst. Growth Cryst. Technol. 19 (2009) 184.
  20. C.-S. Kim and S.-M. Kang, "A study on Ni formation by reduction of NiO nano crystals", J. Kor. Cryst. Growth Cryst. Technol. 19 (2009) 246.