DOI QR코드

DOI QR Code

Development of Underwater Adhesive, Epoxy, and FRP Composite for Repair and Strengthening of Underwater Structure

수중 구조물의 보수·보강을 위한 수중 접착제, 에폭시와 섬유복합재의 개발

  • Kim, Sung-Bae (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Yi, Na-Hyun (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Nam, Jin-Won (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Byun, Keun-Joo (Dept. of Civil and Environmental System Engineering, Yonsei University) ;
  • Kim, Jang-Ho Jay (Dept. of Civil and Environmental System Engineering, Yonsei University)
  • 김성배 (연세대학교 사회환경시스템공학부) ;
  • 이나현 (연세대학교 사회환경시스템공학부) ;
  • 남진원 (연세대학교 사회환경시스템공학부) ;
  • 변근주 (연세대학교 사회환경시스템공학부) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • Received : 2009.06.26
  • Accepted : 2010.01.19
  • Published : 2010.04.30

Abstract

Recently, numerous construction techniques for repairing and strengthening methods for above ground or air exposed concrete structure have been developed. However repairing and strengthening methods for underwater structural members under continuous loading, such as piers and steel piles need the further development. Therefore, this study develops an aqua epoxy, which can be used for repairing and strengthening of structural members located underwater. Moreover, using the epoxy material and strengthening fibers, a fiber reinforced composite sheet called Aqua Advanced FRP (AAF) for underwater usage is developed. To verify and to obtain properties of the material and the performance of AAF, several tests such as pull-off strength test, bond shear strength test, and chemical resistance test, were carried out. The results showed that the developed aqua epoxy does not easily dissolve in wet conditions and does not create any residual particle during hardening. In spite of underwater conditions, it showed the superior workability, because of the high viscosity over 30,000 cps and adhesion capacity over 2 MPa, which are nearly equivalent to those used in dry conditions. In case of the chemical resistance test, the developed aqua epoxy and composite showed the weight change of about 0.5~1.0%, which verifies the superior chemical resistance.

현재 육상 노출 콘크리트 구조물의 보수 및 보강공법에는 많은 신기술이 개발되었고 연구도 많이 진행되고 있으나, 수중에 존치되어 있는 구조물, 즉 교각, 부두 잔교 및 강관파일과 같이 해수 및 수중에 잠겨 있으며, 지속적인 하중을 받는 콘크리트 및 강재의 보수보강 기술에 대한 연구는 많지 않다. 그러므로 이 연구에서는 해수나 수중에 있는 구조물의 보수 보강 공법에 사용할 수 있는 수중 에폭시를 개발하였고, 이 에폭시 재료와 보강섬유을 이용하여 수중용 FRP 복합재를 개발하였다. 개발된 재료의 성능을 검증하기 위하여 다양한 기초물성에 대한 시험을 수행하였다. 성능시험 결과, 개발된 에폭시는 수중에서도 풀림이 거의 없고 부유물질이 발생하지 않는다. 또한 수중이라는 제약 조건 속에서도 30,000 cps 이상의 높은 점성을 갖기 때문에 우수한 작업성을 보이며, 수중에서도 육상에서와 거의 유사한 2 MPa 이상의 부착성능을 발휘하는 것으로 나타났다. 내화학성 시험 결과에서도 중량변화율은 약 0.5~1.0% 이내로 측정되어 우수한 내염 저항성을 확인하였다.

Keywords

References

  1. Karbhari, V. M. and Seible, F., “Fiber Reinforced Composite-advanced Materials for the Renewal of Civil Infrastructure,” Applied Composite Materials, Vol. 7, No. 2-3, 2000, pp. 95-124. https://doi.org/10.1023/A:1008915706226
  2. Neale, K. W., “FRPs for Structural Rehabilitation: a Survey of Recent Progress,” Progress in Structural Engineering and Materials, Vol. 2, No. 2, 2000, pp. 133-138. https://doi.org/10.1002/1528-2716(200004/06)2:2<133::AID-PSE16>3.0.CO;2-C
  3. Meier, U., Deuring, M., Meier, H., and Schwegler, G., “CFRP Bonded Sheets,” Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications, Elsevier Science Publishers, Vol. 42, 1993, pp. 423-434.
  4. ACI Committee 440, State-of-the-art Report on Fiber Reinforced Plastic Reinforcement for Concrete Structure (ACI 440R-96), American Concrete Institute, Farmington Hills, Mich., 1996, 65 pp.
  5. ACI Committee 440, Guide for the Design and Construction of Concrete Reinforced with FRP bars (ACI 440.1R-06), American Concrete Institute Committee 440, Farmington Hills, Mich., 2006, 44 pp.
  6. Santoh, N., “CFCC (Carbon Fiber Composite Cable),” Fiber-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures: Properties and Applications, Elsevier Science Publishers, Vol. 42, 1993, pp. 223-247.
  7. 이종열, 이웅종, “구조물의 보수.보강 재료의 현황,” 토목, 47권, 4호, 1999, pp. 34-45.
  8. 박준명, 홍성남, 박선규, “에폭시 섬유판넬을 이용한 수중구조물의 단면보수시스템에 대한 성능평가,” 대한토목학회 논문집, 24권, 1A호, 2004, pp. 159-166.
  9. Michael, V. S. and Jeffrey, A. P., “FRP Materials for the Rehabilitation of Tubular Steel Structures, for Underwater Applications,” Composite Structures, Vol. 80, No. 3, 2007, pp. 440-450. https://doi.org/10.1016/j.compstruct.2006.05.029
  10. Sen, R. and Mullins, G., “Application of FRP Composites for Underwater Piles Repair,” Composites Part B: Engineering, Vol. 38, No. 5-6, 2007, pp. 751-758. https://doi.org/10.1016/j.compositesb.2006.07.011
  11. Mullins, G., Sen, R., Suh, K., and Winters, D., “Underwater Fiber-reinforced Polymers Repair of Prestressed Piles in the Allen Creek Bridge,” Journal of Composites for Construction, ASCE, Vol. 9, No. 2, 2005, pp. 136-146. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(136)
  12. Hancock, P. and Cuthberson, R. C., “The Effect of Fiber Length and Interfacial Bond in Glass Fiber-Epoxy Resin Composites,” Journal of Material Science, Vol. 5, No. 9, 1970, pp. 762-768. https://doi.org/10.1007/BF00562162
  13. Spanoudakis, J. and Young, R. J., “Crack Propagation in a Glass Particle-Filled Epoxy Resin,” Journal of Material Science, Vol. 19, No. 2, 1984, pp. 487-496. https://doi.org/10.1007/BF02403235
  14. Bazinet, S., Cereone, L., and Worth, F., “Composite FRP Moves into Underwater Repair Applications,” Society for the Advancement of Material and Process Engineering (SAMPE) Journal, Vol. 39, No. 3, 2003, pp. 8-16.
  15. Sen, R., Mullins, G., Suh, K., and Winters, D., “FRP Application in Underwater Repair of Corroded Piles,” 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures, ACI SP-230, Farmington Hills, Mich., Vol. 2, 2005, pp. 1139-1156.
  16. Mullins, G., Sen, R., Suh, K., and Winters, D., “A Demonstration of Underwater FRP Repair,” Concrete International, Vol. 28, No. 1, 2006, pp. 70-73.