DOI QR코드

DOI QR Code

Influence of Mineral Admixtures on the Resistance to Sulfuric Acid and Sulfate Attack in Concrete

콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향

  • Bae, Su-Ho (Dept. of Civil Engineering, Andong National University) ;
  • Park, Jae-Im (Dept. of Civil Engineering, Andong National University) ;
  • Lee, Kwang-Myong (Dept. of Civil and Environmental Engineering, Sungkyunkwan University)
  • 배수호 (안동대학교 토목공학과) ;
  • 박재임 (안동대학교 토목공학과) ;
  • 이광명 (성균관대학교 건설환경시스템공학과)
  • Received : 2009.10.14
  • Accepted : 2009.12.09
  • Published : 2010.04.30

Abstract

It has been well known that concrete structures exposed to acid and sulfate environments such as sewer, sewage and wastewater, soil, groundwater, and seawater etc. show significant decrease in their durability due to chemical attack. Such deleterious acid and sulfate attacks lead to expansion and cracking in concrete, and thus, eventually result in damage to concrete matrix by forming expansive hydration products due to the reaction between portland cement hydration products and acid and sulfate ions. Objectives of this experimental research are to investigate the effect of mineral admixtures on the resistance to acid and sulfate attack in concrete and to suggest high-resistance concrete mix against acid and sulfate attack. For this purpose, concretes specimens with three types of cement (ordinary portland cement (OPC), binary blended cement (BBC), and ternary blended cement (TBC) composed of different types and proportions of admixtures) were prepared at water-biner ratios of 32% and 43%. The concrete specimens were immersed in fresh water, 5% sulfuric acid, 10% sodium sulfate, and 10% magnesium sulfate solutions for 28, 56, 91, 182, and 365 days, respectively. To evaluate the resistance to acid and sulfate for concrete specimens, visual appearance changes were observed and compressive strength ratios and mass change ratios were measured. It was observed from the test results that the resistance against sulfuric acid and sodium sulfate solutions of the concretes containing mineral admixtures were much better than that of OPC concrete, but in the case of magnesium sulfate solution the concretes containing mineral admixtures was less resistant than OPC concrete due to formation of magnesium silicate hydrate (M-S-H) which is non-cementitious.

하수도, 오 폐수, 토양 속, 지하수 및 해수 등의 환경에 건설되는 콘크리트 구조물은 산 및 황산염에 노출되어 있다. 이 같은 산 및 황산염 침투로 포틀랜드 시멘트 중의 수화생성물과 산 및 황산염 이온이 반응하여 팽창 수화물을 생성함으로써 콘크리트에 팽창 및 균열을 발생시켜, 결국 콘크리트 매트릭스에 손상을 일으킨다. 따라서 이 연구의 목적은 콘크리트의 황산 및 황산염 침투 저항성에 미치는 광물질 혼화재의 영향을 평가하여, 황산 및 황산염 침투에 대한 고저항성 콘크리트를 제시하는 것이다. 이를 위하여 광물질 혼화재의 형태 및 비율을 변화시킨 OPC, 2성분계 및 3성분계의 3가지 종류의 시멘트를 사용하여 물-결합재비 32% 및 43%인 콘크리트를 제조하였다. 제작된 콘크리트 시편은 민물, 5% 황산, 10% 황산나트륨 및 10% 황산마그네슘 용액에 재령 28, 56, 91, 182 및 365일 동안 각각 침지시켰다. 콘크리트의 황산 및 황산염 침투 저항성을 평가하기 위하여 외관변화 관찰과 압축강도 비 및 질량 변화율을 측정하였다. 그 결과, 광물질 혼화재를 혼입한 콘크리트의 황산 및 황산나트륨 침투에 대한 저항성은 OPC 콘크리트 경우 보다 훨씬 우수한 것으로 나타났으나, 황산마그네슘의 경우 비결합재질의 규산마그네슘수화물(M-S-H)의 형성으로 광물질 혼화재를 혼입한 콘크리트가 OPC 콘크리트보다 불리한 것으로 나타났다.

Keywords

References

  1. Mehta, P. K., “Mechanism of Sulfate of Attack on Portland Cement Concrete-Another Look,” Cement and Concrete Research, Vol. 13, No. 3, 1983, pp. 401-406. https://doi.org/10.1016/0008-8846(83)90040-6
  2. 박영식, 서진국, 이재훈, 신영식, “황산염의 침해를 받는 고강도 콘크리트의 강도특성과 물성 변화,” 콘크리트학회 논문집, 10권, 5호, 1998, pp. 117-128.
  3. 문한영, 이승태, 김홍삼, 김성수, “화학적 침식을 받는 포틀랜드계 시멘트 모르타르의 저항성 평가,” 대한토목학회 논문집, 22권, 1-A호, 2002, pp. 181-191.
  4. 이승태, “메타카올린 혼합 시멘트 경화체의 황산마그네슘 침식 및 성능저하 모드,” 콘크리트학회 논문집, 21권, 1호, 2009, pp. 21-27. https://doi.org/10.4334/JKCI.2009.21.1.021
  5. Santhanam, M., Cohen, M. D., and Olek, J., “Mechanism of Sulfate Attack : A Fresh Look Part 2 : Proposed Mechanisms,” Cement and Concrete Research, Vol. 33, No. 3, 2003, pp. 341-346. https://doi.org/10.1016/S0008-8846(02)00958-4
  6. Shazali, M. A., Baluch, M. H., and Al-Gadhib, A. H., “Predicting Residual Strength in Unsaturated Concrete Exposed to Sulfate Attack,” Journal of Materials in Civil Engineering, Vol. 18, No. 3, 2006, pp. 343-354. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(343)
  7. Al-Amoudi, O. S. B., “Sulfate Attack and Reinforcement Corrosion in Plain and Blended Cements Exposed to Sulfate Environments,” Building and Environment, Vol. 33, No. 1, 1998, pp. 53-61. https://doi.org/10.1016/S0360-1323(97)00022-X
  8. Wee, T. H., Suryavanshi, A. K., Wong, S. F., and Anisur Rahman, A. K. M., “Sulfate Resistance of Concrete Containing Mineral Admixtures,” ACI Materials Journal, Vol. 97, No. 5, 2000, pp. 536-549.
  9. 문한영, 전중규, 김홍삼, “광물질혼화재 혼합 시멘트 경화체의 황산 침식에 대한 저항성,” 대한토목학회 논문집, 25권, 1A호, 2005, pp. 1-8.
  10. 김명식, 백동일, “ 침해를 받는 부순모래 모르타르의 단위중량 및 압축강도 특성,” 대한토목학회 논문집, 27권, 4A호, 2007, pp. 585-591.
  11. JSTM C 7401, “コンクり一トの溶液浸せきによる耐藥品性試驗方法,” Japanese Industrial Standard, 1999, pp. 1-10.
  12. Monteny, J., Vincke, E., Beeldens, A., Taerwe, L., Van Gemert, D., and Verstraete, W., “Chemical, Microbiological, and in Situ Test Methods for Biogenic Sulfuric Acid Corrosion of Concrete,” Cement and Concrete Research, Vol. 30, No. 4, 2000, pp. 623-634. https://doi.org/10.1016/S0008-8846(00)00219-2
  13. Mangat, P. S. and Khatib, J. M., “Influence of Fly Ash, Silica Fume, and Slag on Sulfate Resistance of Concrete,” ACI Materials Journal, Vol. 92, No. 5, 1995, pp. 542-552.
  14. Shanahan, N. and Zayed, A., “Cement Composition and Sulfate Attack Part”, Cement and Concrete Research, Vol. 37, No. 4, 2007, pp. 618-623. https://doi.org/10.1016/j.cemconres.2006.12.004
  15. Santhanam, M., Cohen, M. D., and Olek, J., “Mechanism of Sulfate Attack : A Fresh Look Part 1 : Summary of Experimental Results,” Cement and Concrete Research, Vol. 32, No. 6, 2002, pp. 915-921. https://doi.org/10.1016/S0008-8846(02)00724-X
  16. Bleszynski, R., Hooton, R. D., Thomas, M. D. A., and Rogers, C. A., “Durability of Ternary Blend Concrete with Silica Fume and Blast-Furnace Slag: Laboratory and Outdoor Exposure Site Studies,” ACI Materials Journal, Vol. 99, No. 5, 2002, pp. 499-508.
  17. ASTM C 1012, Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to Sulfate Solution, American Society for Testing and Materials, 2007, pp. 1-6.
  18. Li, G. and Zhao, X., “Properties of Concrete Incorporating Fly Ash and Ground Granulated Blast-Furnace Slag,” Cement and Concrete Composites, Vol. 25, Issue 3, 2003, pp. 293-299. https://doi.org/10.1016/S0958-9465(02)00058-6
  19. Skalny, J., Marchand, J., and Odler, I., Sulfate Attack on Concrete, Spon Press, 2002, pp. 101-102.

Cited by

  1. Long-term Durability Characteristics of Fly ash Concrete Containing Lightly Burnt MgO Powder vol.33, pp.3, 2013, https://doi.org/10.12652/Ksce.2013.33.3.909
  2. Analytical Study on Structural Behavior of Surface Damaged Concrete Member by Calcium Leaching Degradation vol.18, pp.4, 2014, https://doi.org/10.11112/jksmi.2014.18.4.022
  3. Durability Assessment of High Strength Concrete with High Volume Mineral Admixture vol.27, pp.6, 2015, https://doi.org/10.4334/JKCI.2015.27.6.641
  4. Resistance against Chloride Ion and Sulfate Attack of Cementless Concrete vol.6, pp.2, 2015, https://doi.org/10.11004/kosacs.2015.6.2.063
  5. Evaluation on the durability of low heat concrete using ternary blended cement vol.18, pp.4, 2016, https://doi.org/10.12989/cac.2016.18.4.527
  6. Long-Term Durability Estimation of Cementless Concrete Based on Alkali Activated Slag vol.4, pp.2, 2016, https://doi.org/10.14190/JRCR.2016.4.2.149