DOI QR코드

DOI QR Code

Low Cycle Fatigue Model for Longitudinal Reinforcement

축방향철근의 저주파 피로 모델

  • 고성현 (제주산업정보대학 토목과) ;
  • 이재훈 (영남대학교 건설시스템공학과)
  • Received : 2009.11.25
  • Accepted : 2010.02.16
  • Published : 2010.04.30

Abstract

The purposes of this study are to verify the existing model and to propose a rational model for the fracture characteristic of reinforcing steel which is manufactured in Korea being subjected to cyclic loading. This investigation deals with modeling of the low-cycle fatigue behavior for longitudinal reinforcement steel of reinforced concrete bridge substructure (piles and columns of piers). The proposed low-cycle model of longitudinal steel is modeled based on 81 experimental data. The non-linear analysis program was developed using the proposed low-cycle model. The non-linear analysis are applied to the 6 circular bridge column test results and the accuracy of proposed model is discussed.

이 연구는 기존 모델에 대한 검증 및 국내에서 생산되고 있는 철근이 반복하중을 받는 경우의 파괴특성에 대한 적합한 모델을 제시하는 것을 목적으로 한다. 이 논문은 철근콘크리트 하부구조(파일과 교각)에 배근된 축방향철근에 대한 저주파 피로 거동에 대한 모델링을 다루었고, 전체 81개의 저주파 피로 실험 데이터에 기초하여 저주파 피로 모델을 제안하였다. 제안된 저주파 피로 모델을 적용하여 비선형해석 프로그램을 개발하였고 원형 기둥 실험체에 대한 6개의 실험 결과를 대상으로 비선형 해석을 적용하고 제안모델의 정확성을 평가하였다.

Keywords

References

  1. Chang, G. A. and Mander, J. B., “Seismic Energy Based Damage Analysis of Bridge Columns: Part-Evaluation of Seismic Capacity,” Technical Report NCEER-94-0006, NCEER, New York, 1994, pp. 2-57-2-58.
  2. Dutta, A. and Mander, J. B., “Energy Based Methodology for Ductility Design of Concrete Columns,” ASCE Journal of Structural Engineering, Vol. 127, No. 12, 2001, pp. 1374-1381. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:12(1374)
  3. Kocanda S., Fatigue Failure of Metals, Sijthoff & Noordhoff International Publishers, Poland, 1978, 379 pp.
  4. Fuchs, H. O. and Stephens, R. I., Metal Fatigue in Engineering, Willey Interscience, New York, 1980, 472 pp.
  5. Miner, M. A., “Cumulative Damage in Fatigue,” Journal of Applied Mechanics, Trans. ASME, Vol. 67, 1945, pp. A159-A164.
  6. Manson, S. S., “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, University of Michigan Engineering Research Institute, 1953, pp. 9-75.
  7. Coffin, L. F. Jr., “A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal,” Trans. ASME, Vol. 76, 1954, pp. 931-950.
  8. Koh, S. K. and Stephens, R. I., “Mean Stress Effects on Low Cycle fatigue for a High Strength Steel,” Fatigue Fracture of Engineering Materials and Structures, Vol. 14, No. 4, 1991, pp. 413-428. https://doi.org/10.1111/j.1460-2695.1991.tb00672.x
  9. Smith, K. N., Watson, P., and Topper, T. H., “A Stress-strain Function for the Fatigue of Metals,” Journal of Materials, ASTM, Vol. 5, No. 4, 1970, pp. 767-778.
  10. Lorenzo, F. and Laird, C., “A New Approach to Predicting Fatigue Life Behavior under the Action of Mean Stresses,” Materials Science and Engineering, Vol. 62, 1984, pp. 205-210. https://doi.org/10.1016/0025-5416(84)90223-4
  11. Hsu, T. T. C., Unified Theory of Reinforced Concrete, CRC Press, Inc., Boca Raton, 1993, pp. 205-256.
  12. Maekawa, K., Pimanmas, A., and Okamura, H., Nonlinear Mechanics of Reinforced Concrete, Spon press, New York, 2003, pp. 682-711.
  13. Shin, H. M., “Finite Element Analysis of Reinforced Concrete Members Subjected to lead Reversals,” Doctoral Thesis, University of Tokyo, 1988, 224 pp.
  14. Mander, J. B., Panthaki, F. D., and Kasalanati, A., “Low- Cycle Fatigue Behavior of Reinforcing Steel,” ASCE Journal of Materials in Civil Engineering, Vol. 6, No. 4, 1994, pp. 453-468. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:4(453)
  15. Dodd, L. L. and Restrepo-Posada, J. I., “Model for Predicting Cycle Behavior of Reinforcing Steel,” ASCE Journal of Structural Engineering, Vol. 121, No. 3, 1995, pp. 433-445. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(433)
  16. Tong, X., Wang, D., and Xu, H., “Investigation of Cyclic Hysteresis Energy in Fatigue Failure Process,” International Journal of Fatigue, Vol. 11, No. 5, 1989, pp. 353-359. https://doi.org/10.1016/0142-1123(89)90062-5
  17. 이재훈, 고성현, “축방향철근의 저주파 피로 거동,” 콘크리트학회 논문집, 22권, 2호, pp.
  18. 이재훈, 배성룡, 윤석구, “나선철근교각의 내진성능실험,” 대한토목학회논문집, 21권, 1-A호, 2001, pp. 109-121.
  19. 이재훈, 김광수, 배성룡, 윤석구, “고강도콘크리트 나선 철근교각의 내진거동특성,” 대한토목학회논문집, 21권, 5-A호, 2001, pp. 707-718.
  20. 이재훈, 석상근, 윤석구, “원형띠철근 교각의 내진성능에 관한 실험적 연구,” 대한토목학회논문집, 22권, 1-A호, 2002, pp. 159-170.
  21. 이재훈, 김광수, 배성룡, “지진하중에 대한 고강도콘크리트 나선철근교각의 한정연성거동,” 대한토목학회논문집, 23권, 3-A호, 2003, pp. 385-395.
  22. 박창규, 정영수, 고성현, 이재훈, “주철근 겹침이음된 실물교각의 횡구속 정도에 따른 내진성능평가,” 콘크리트학회 논문집, 16권, 5호, 2004, pp. 687-696. https://doi.org/10.4334/JKCI.2004.16.5.687
  23. Kunnath, S., K., El-Bahy, A., Taylor, A., and Stone, W., “Cumulative Seismic Damage of Reinforced Concrete Bridge Piers,” Technical Report NCEER-97-0006, National Center for Earthquake Engineering Research, 1997, 147 pp.
  24. Calderone, A. J., Lehman, D. E., and Moehle, J. P., “Behavior of Reinforced Concrete Bridge Columns Having Varying Aspect Ratios and Varying Lengths of Confinement,” Pacific Earthquake Engineering Research Center Report, 2000/08, 2000. 136 pp.
  25. Kowalsky, M. J., Priestley, M. J. N., and Seible, F., “Shear and Flexural Behavior of Lightweight Concrete Bridge Columns in Seismic Regions,” ACI Structural Journal, Vol. 96, No. 1, 1999, pp. 136-148.
  26. Stone, W. C. and Cheok, G. S., “Inelastic Behavior of Fullscale Bridge Columns Subjected to Cyclic Loading,” NIST BSS 166, Building Science Series, Center for Building Technology, National Institute of Standards and Technology, 1989, 252 pp.
  27. Assa, B. and Nishiyama, M., “Prediction of Load-Displacement Curve of High-strength Concrete Columns under Simulated Seismic Loading,” ACI Structural Journal, Vol. 95, No. 5, 1998, pp. 547-557.
  28. Mander, J. B., Priestley, M. J. N., and Park, R., “Theoretical Stress-Strein Model for Confined Concrete,” Journal of Structural Engineering, Vol. 114, No. 8, 1988, pp. 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)

Cited by

  1. Displacement Ductility of Circular RC Column According to the Spacing of Spirals vol.17, pp.2, 2013, https://doi.org/10.11112/jksmi.2013.17.2.071
  2. Failure Behavior of Octagonal Flared RC Columns Using Oblong Hoops vol.18, pp.3, 2014, https://doi.org/10.11112/jksmi.2014.18.3.058