DOI QR코드

DOI QR Code

연소로 효율증진을 위한 on-line 세정 방법에 관한 연구

A Study of On-line Cleaning Method for Increasing Efficiency in a Combustor

  • 장현태 (한서대학교 화학공학과) ;
  • 한승동 ((주)씨에스글로벌) ;
  • 박태성 (이산화탄소 저감 및 처리기술개발 사업단) ;
  • 차왕석 (군산대학교 토목.환경공학부)
  • 투고 : 2009.08.10
  • 심사 : 2010.03.18
  • 발행 : 2010.03.31

초록

액상 중유 연료를 사용하는 고용량 증기 보일러에서 발생되어 연소기기 내부에 침적되는 슈트, 슬래그, 크랭커, 회분, 산화물의 on-line 세정을 위한 세정제 제조에 대한 연구를 수행하였다. 액상 중유 연료를 사용하는 보일러 및 가열로에 생성되는 슈트, 슬래그, 크랭커, 회분, 산화물을 제거하는 기존 기술은 보일러 및 가열로의 가동 중단 후 작업자들에 의한 기계적인 처리를 통하여 침적물을 제거하는 기술을 사용하고 있다. 기존 기술을 대치할 수 있고 보일러의 중단이 없는 상태에서 침적물을 세정할 수 있는 세정제의 최적 조성을 도출하였다. 질산암모늄과 질산마그네슘의 혼합물이 주 세정제로 도출되었으며, 각종 전이금속 화합물에 의한 영향을 영향을 연구하여, 세정에 의한 부식을 방지할 수 있으며, 연소효율의 증대를 얻을 수 있는 전이금속화합불 첨가제를 도출하였다.

An Experimental study of cleaning solution has been performed on a high capacity steam boiler burning heavy fuel oil to on-line cleaning of deposit. The deposit is mixture of soot, slag, ash, metal oxide and clinker. The traditional technology of deposit cleaning was carried hand-crafted. The conventional technology of boiler cleaning method is mechanical removal by the worker while the boiler shut down operation. In this experiment, the deposit of mixture of soot, slag, ash, metal oxide and clinker has been removed by the cleaning agents without shut down of boiler burning. This study found out the optimum cleaning solution composition. The best results have been obtained when the mixture of ammonium nitrate and $MgNO_3$ were used in cleaning solution. The various transition metal effect was investigated for optimum mixing condition. In this research, the metal compound additive of the clean solution compoition was obtained. The combustion efficiency was improved by on-line cleaning with derived clean solution compoition. On-line cleaning method prevents the fouling and corrosion in the boiler and heat exchanger.

키워드

참고문헌

  1. 산업정보DB, 산업자원부, 2008.
  2. http://en.wikipedia.org/wiki/Kyoto_Protocol.
  3. Linak, W. P., and Wendt, J.O.L., "Trace metal transformation mechanisms during coal combustion", Fuel Process. Technol., V39(2), p 173-198, 1994. https://doi.org/10.1016/0378-3820(94)90179-1
  4. Lin, W. Y., and Biwas, P., "Metallic particle formation and growth dynamics during incineration", Combust. Sci. Technol., V101, p 29-43, 1994. https://doi.org/10.1080/00102209408951864
  5. Barroso, J., and Barreras, F. and Ballester, J., "Behavior of high-capacity steam boiler using heavy fuel oil Part I. High-temperature corrosion", Fuel Processing Technology, V86, p 89-105, 2004. https://doi.org/10.1016/j.fuproc.2003.12.006
  6. Stanmore, B.R., and Brilhac, J.F., and Gilot, P., "The oxidation of soot: a review of experiments, mechanisms and models", carbon, V39, p 2247-2268, 2001. https://doi.org/10.1016/S0008-6223(01)00109-9
  7. Allouis, C., and Beretta F., and D'Alessio A., "Structure of inorganic and carbonaceous particles emitted from heavy oil combustion", chemosphere, V51, p 1091-1096, 2003. https://doi.org/10.1016/S0045-6535(02)00714-2
  8. Barreras, F., and Barroso, J., "Behavior of a high-capacity steam boiler using heavy fuel oil Part II: cold-end corrosion", Fuel Processing Technology, V86, p 107-121, 2004. https://doi.org/10.1016/j.fuproc.2003.12.005
  9. Otsuka, N., "Effects of fuel impurities on the fireside corrosion of boilers tubes in advanced power generating systems-a thermodynamics calculation of deposits chemistry" Corros.Sci, V44, p 265-283, 2002. https://doi.org/10.1016/S0010-938X(01)00060-9
  10. Yamashita, T. and Vannice, A., "Tempera ture-Programmed Desorption of NO Adsorbed on $Mn_2O_3$ and $Mn_3O_4$,"" App. Cat. B: Environ., 13(2), p141-155, 1997. https://doi.org/10.1016/S0926-3373(96)00099-9
  11. Singoredjo, L., Korver, R., Kapreijn, F., and Moulijn, J. A., "Alumina Supported Manganese Oxides for the Low-Temperature Selective Catalytic Reduction of Nitric Oxide with Ammonia," App. Cat. B: Environ., 1(4), 297-316, 1992. https://doi.org/10.1016/0926-3373(92)80055-5
  12. Chmielarz, L., Kutrowski, P., Dziembaj, R., Cool P. and Vansant, E. F., "Selective Catalytic Reduction of NO with Ammonia over Porous Clay Heterostructures Modified with Copper and Iron Species," Catalysis Today, 119(1-4), 181-186, 2007. https://doi.org/10.1016/j.cattod.2006.08.017