Habitats Selection of Zooplankton between Pelagic and Littoral Zone in Shallow Reservoirs in Summer

여름철 얕은 저수지의 중앙과 연안에서 동물플랑크톤 군집의 서식지 선택

  • Jeong, Hyun-Gi (Nakdong River Environment Research Center, National Institute of Environmental Research, Ministry of Environment) ;
  • Seo, Jung-Kwan (Nakdong River Environment Research Center, National Institute of Environmental Research, Ministry of Environment) ;
  • Lee, Hae-Jin (Nakdong River Environment Research Center, National Institute of Environmental Research, Ministry of Environment) ;
  • Lee, Won-Choel (Department of Life Sciences, Hanyang University) ;
  • Lee, Jae-Kwan (Nakdong River Environment Research Center, National Institute of Environmental Research, Ministry of Environment)
  • 정현기 (국립환경과학원 낙동강물환경연구소) ;
  • 서정관 (국립환경과학원 낙동강물환경연구소) ;
  • 이혜진 (국립환경과학원 낙동강물환경연구소) ;
  • 이원철 (한양대학교 생명과학과) ;
  • 이재관 (국립환경과학원 낙동강물환경연구소)
  • Received : 2010.10.13
  • Accepted : 2010.11.09
  • Published : 2010.12.01

Abstract

The Abundance of zooplankton was studied in the pelagic and the littoral zone in four shallow reservoirs along with the Nakdong river basin of S. Korea. In the pelagic zone, there was a higher zooplankton density ($477.5{\pm}312.4$ ind. $L^{-1}$) than in the littoral zone during our study period (t=2.337, p<0.05). Overall, Rotifers were the most abundant group in the studied reservoirs. However, there are no significant correlations between the pelagic and the littoral zone in physical and chemical parameters. In the pelagic and the littoral zone, zooplankton density usually increased with increasing density of aquatic plants in the littoral zone. However, this study showed different trends. Although macrophyte abundance was higher in the littoral zone than in the pelagic zone, zooplankton abundance was higher in pelagic zone. Moreover, when macrophytes (Trapa japonica and Spirodela plyrhiza) covered the complete water surface of the reservoir, zooplankton abundance was higher. It appears that comparisons between the pelagic and the littoral zone give important cues on the selection of habitats by zooplankton. It is assumed that a higher density of aquatic plants does not always imply a higher density of zooplankton in the littoral zone. Furthermore, when the water surface was covered with aquatic plants, the zooplankton communities showed the highest density in the pelagic zone. These results imply that habitat selection of the zooplankton community (Rotifers) is influenced by aquatic plant density with an associated decrease in predation pressure during summer.

본 연구에서는 낙동강 수계의 농업용수로 활용되는 수심이 낮은 4개 저수지의 중앙과 연안에서 서식하는 동물플랑크톤 군집을 조사하였다. 4개 지역의 조사기간 동안 평균 동물플랑크톤 현존량은 저수지 중앙에서 $477.5{\pm}312.4$ ind. $L^{-1}$로 높게 조사되었고, 저수지 중앙과 연안을 비교 시 유의한 차이를 보였다(Fig. 3, t=2.337, p<0.05). 대부분 우점한 분류군은 소형 윤충류로 지역간 차이를 보였다. 이러한 결과는 저수지 내 이화학요인 결과와는 유의한 차이를 보이지 않았다. 일반적으로 저수지 연안에서 수생식물의 밀도가 증가하면 동물플랑크톤도 연안에서 높은 밀도를 보인다. 하지만 4개 저수지의 여름철 수생식물 분포는 지역간 차이를 보이며 얕은 저수지의 전 수면을 Trapa japonica, Spirodela polyrhiza 등 부유식물이나 부엽식물 등으로 뒤덮는 경우 동물플랑크톤 밀도는 저수지 연안(littoral)과 비교 시 중앙(pelagic)에서 높게 조사되었다. 저수지 중앙과 연안의 동물플랑크톤 서식지 선택에 있어 수생식물은 중요한 요인으로 작용된다. 그리고 수생식물의 높은 밀도로 인해서 항상 연안의 동물플랑크톤밀도가 증가하지는 않는다. 게다가 전 수면을 수생식물이 덮을 경우 저수지 중앙의 동물플랑크톤 군집은 크게 증가한다. 결론적으로 저수지 내 동물플랑크톤 군집은 포식압 노출에 영향을 미치는 수생식물 분포에 영향을 받으며 요각류나 지각류 보다 윤충류에서 크게 차이를 보인다.

Keywords

References

  1. 국립환경과학원. 2008. 낙동강수계 호소환경 및 생태조사 1년차 보고서. pp. 418-478.
  2. 국립환경과학원. 2009. 낙동강수계 호소환경 및 생태조사 2년차 보고서. pp. 541-551.
  3. 김현우, 라긍환, 정광석, 박종환, 허유정, 김상돈, 나정은, 정명화, 이학영. 2010. 국내 남서부지역 호수 및 저수지 생태계의 플랑크톤 동태 변화. 환경생물. 28:86-94.
  4. Armengol X, A Esparcia and MR Miracle. 1998. Rotifer vertical distribution in a strongly stratified lake: a multivariate analysis. Hydrobiologia 387/388:161-170.
  5. Burks RL, DM Lodge, E Jeppesen and TL Lauridsen. 2002. Diel horizontal migration of zooplankton: costs and benefit of inhabiting the littoral. J. Freshwat. Biol. 47:343-365. https://doi.org/10.1046/j.1365-2427.2002.00824.x
  6. Castilho-Noll MSM, CF Camara, MF Chicone and EH Shibata. 2010. Pelagic and littoral cladocerans (Crustacea, Anomopoda and Ctenopoda) from reservoirs of the Northwest of Sao Paul State, Brazil. Biota Neotrop. 10:21-30.
  7. Cordell JR and CA Simentad. 1997. Sink or swim? Copepod population maintenance in the Columbia River estuarine turbidity-maxima region. Mar. Biol. 129:309-317. https://doi.org/10.1007/s002270050171
  8. Dineen G and AL Robertson. 2010. Subtle top-down control of a freshwater meiofaunal assemblage by juvenile fish. J. Freshwat. Biol. 55:1818-1830. https://doi.org/10.1111/j.1365-2427.2010.02416.x
  9. Einsle U. 1993. Crustacea: Copepoda: Calanoida und Cyclopoida. In Susswasserfauna von Mitteleuropa (Schwoerbel J and P Zwick eds.). Gustav Fischer Verlag, 8(4-1): 1-209.
  10. Estlander S, L Nurminen, M Olin, M Vinni and J Horppila. 2009. Seasonal fluctuation in macrophyte cover and water trans-parency of four brown-water lakes; implications for crustacean zooplankton in littoral and pelagic habitats. Hydrobiologia 620:109-120. https://doi.org/10.1007/s10750-008-9621-8
  11. Fulton RS and HW Paerl. 1988. Effects of the blue-green alga Microcystis aeruginosa on zooplankton competitive relations. Oecologia 76:383-389. https://doi.org/10.1007/BF00377033
  12. Geraldes AM and MJ Boavida. 2004. Do littoral macrophytes influence Crustacean zooplankton distribution? Limnetica 23:57-64.
  13. Jeppesen E, JP Jensen, P Kristense, M Sondergaard, E Morttensen, O Sortkjar and K Olrik. 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic temperate lakes 2: threshold levels, long term stability and conclusions. Hydrobiologia 200/201:219-227. https://doi.org/10.1007/BF02530341
  14. Jeppesen E, T Lauridsen, T Kairesalo and MR Perrow. 1998. Impact of submerged macrophytes on fish-zooplankton interaction: large-scale enclosure experiments in a shallow eutrophic lake. J. Freshwat. Biol. 33:255-270.
  15. Kairesalo T, I Tatrai and E Luokkanen. 1998. Impacts of waterweed (Elodea canadensis Michx) on fish-plankton interactions in the lake littoral. Verh. Internat. Verein. Limnol. 26:1846-1851.
  16. Keppeler EC. 2003. Abundance of zooplankton from different zones (pelagic and littoral) and time periods (morning and night) in two Amazonian meandering lakes. Acta Sci. Biol. Sci. 25:287-297.
  17. Kvam OV and OT Kleiven. 1995. Diel horizontal migration and swarm formation in Daphnia in response to Chaoborus. Hydrobiologia 307:177-184. https://doi.org/10.1007/BF00032010
  18. La GH, HG Jeong, MC Kim, HW Kim and GJ Joo. 2007. The field observation on the littoral swarming of cladocera (Scapholeberis kingi Sars. 1903) and the correlation with environmental factors. Korean J. Limnol. 40:581-585.
  19. Lampert W. 1989. The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3:21-27. https://doi.org/10.2307/2389671
  20. Lauridsen TL, LJ Pedersen, E Jeppesen and M Sondergaard. 1996. The importance of Macrophytes bed size for cladoceran composition and horizontal migration in a shallow lake. J. Plankton Res. 18:2283-2294. https://doi.org/10.1093/plankt/18.12.2283
  21. Lemly AD and JF Dimmick. 1982. Structure and dynamics of zooplankton communities in littoral zone of some North Caroline lakes. Hydrobiologia 88:299-307. https://doi.org/10.1007/BF00008511
  22. Margalef R. 1958. Information theory in ecology. Gen. Sys. 3:36-71.
  23. Pace M. 1986. An empirical analysis of zooplankton community size structure across lake trophic gradients1. Limnol. Oceanogr. 31:45-55. https://doi.org/10.4319/lo.1986.31.1.0045
  24. Polunin NVC. 1984. The decomposition of emergent macrophytes in freshwater. Adv. Ecol Res. 14:115-173. https://doi.org/10.1016/S0065-2504(08)60170-1
  25. Riccardi N. 2002. In situ measurement of Daphnia longispina grazing on algae and bacteria in high mountain lake (Lake Paione superiore, Northern Italy) using fluorescently labeled cells. Water Air Soil Pollut. 27:343-357.
  26. Scourfield DJ and JP Harding. 1958. A key to the British species of freshwater Cladocera 2nd, Freshwater. Biol. Assoc. Sci. Publ. 55pp.
  27. Shannon E and W Weaver. 1949. The mathematical theory of communication. Univ. of Illinois Press, Urbana. 117pp.
  28. Simpson EH. 1949. Measurement of diversity, Nature 163:688. https://doi.org/10.1038/163688a0
  29. Smirnov NN and BV Timms. 1983. A revision of the Australian Cladocera (Crustacea). Records Austr. Museum Suppl. 1:132.
  30. Vuorinen I. 1987. Vertical migration of Eurytemora (Crustacea, Copepoda): a compromise between the risks of predation and decreased fecundity. J. Plankton Res. 9:1037-1046. https://doi.org/10.1093/plankt/9.6.1037
  31. Wetzel RG and GE Linkens. 1983. Limnology 2nd Saunders College Publishing. Philadelphia. 860pp.
  32. Wojitalm A, P Frakiewicz, K Izydorczk and M Zalewski. 2003. Horizontal migration of zooplankton in a littoral zone of the lowland Sulejow Reservoir (Central Poland). Hydrobiologia 506/509:339-346. https://doi.org/10.1023/B:HYDR.0000008627.55462.e1