Ultimate Heterogeneous Integration Technology for Super-Chip

슈퍼 칩 구현을 위한 헤테로집적화 기술

  • Received : 2010.12.01
  • Accepted : 2010.12.16
  • Published : 2010.12.30

Abstract

Three-dimensional (3-D) integration is an emerging technology, which vertically stacks and interconnects multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip to form highly integrated micro-nano systems. Since CMOS device scaling has stalled, 3D integration technology allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. The potential benefits of 3D integration can vary depending on approach; increased multifunctionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, increased yield and reliability, flexible heterogeneous integration, and reduced overall costs. It is expected that the semiconductor industry's paradiam will be shift to a new industry-fusing technology era that will offer tremendous global opportunities for expanded use of 3D based technologies in highly integrated systems. Anticipated applications start with memory, handheld devices, and high-performance computers and extend to high-density multifunctional heterogeneous integration of IT-NT-BT systems. This paper attempts to introduce new 3D integration technologies of the chip self-assembling stacking and 3D heterogeneous opto-electronics integration for realizng the super-chip.

삼차원 집적화기술의 현황과 과제 및 향후에 요구되어질 새로운 삼차원 집적화기술의 필요성에 대해 논의를 하였다. Super-chip 기술이라 불리우는 자기조직화 웨이퍼집적화 기술 및 삼차원 헤테로집적화 기술에 대해 소개를 하였다. 액체의 표면장력을 이용하여지지 기반위에 다수의 KGD를 일괄 실장하는 새로운 집적화 기술을 적용하여, KGD만으로 구성된 자기조직화 웨이퍼를 다층으로 적층함으로써 크기가 다른 칩들을 적층하는 것에 성공을 하였다. 또한 삼차원 헤테로집적화 기술을 이용하여 CMOS LSI, MEMS 센서들의 전기소자들과 PD, VC-SEL등의 광학소자 및 micro-fluidic 등의 이종소자들을 삼차원으로 집적하여 시스템화하는데 성공하였다. 이러한 기술은 향후 TSV의 실용화 및 궁극의 3-D IC인 super-chip을 구현하는데 필요한 핵심기술이다.

Keywords

References

  1. T. Kunio, K. Oyama, Y. Hayashi, and M. Morimoto, "Three dimensional ICs, having four stacked active device layers," IEEE International Electron Devices Meeting (IEDM), 837 (1989).
  2. M. Koyanagi, H. Kurino, K-W. Lee, K. Sakuma, N. Miyakawa, H. Itani, "Future System-on-Silicon LSI chips," IEEE MICRO, 18(4), 17 (1998). https://doi.org/10.1109/40.710867
  3. S.J. Souri, K. Banerjee, A. Mehrotra, and K.C. Saraswat, "Multiple Si layer ICs: Motivation, performance analysis, and design implications," in Proc. 37th ACM Design Automation Conf., 873 (2000).
  4. P. Ramm, D. Bonfert, H. Gieser, J. Haufe, F. Iberl, A. Klumpp, A. Kux, R. Wieland, "Interchip via technology for vertical system integration," Proc. IEEE Int. Interconnect Technology Conf. (IITC), 160 (2001).
  5. K. Banerjee, S.J. Souri, P. Kapur, and K.C. Saraswat, "3-D ICs: A Novel Chip Design for Improving Deep-Submicrometer Interconnect Performance and Systems-on-Chip Integration," PROCEEDING OFTHE IEEE, 89(5), 602 (2002).
  6. M. Koyanagi, T. Fukushima, and T. Tanaka, "High-density through silicon vias for 3D-LSIs," Proc. IEEE 97(1), 49 (2006).
  7. K.W Lee, "The next generation package technology for higher performance and smaller systems", in Proc. 3rd Int. Conf. 3D Architect. Semicond. Integr. Packag., (2006).
  8. J.-Q. Lu, K. Rose, and S. Vitkavage, "3D Integration: Why, what, who, when?", Future Fab Int., 23, 25 (2007).
  9. F. Carson, "3D SiP development and trends", in 3D packag. Workshop IMAPS Int. Conf. Exhib. Device Packag. Conf., (2007).
  10. Min-Seung Yoon, "Introduction of TSV (Through Silicon Via) Technology", J. Microelectron. Packag. Soc., 16(1), 1 (2009).
  11. T. Fukushima, Y. Yamada, H. Kikuchi, and M. Koyanagi, "New Three-Dimensional Integration Technology Using Self-Assembly Technique", IEEE International Electron Devices Meeting (IEDM), 359 (2005).
  12. T. Fukushima, H. Kikuchi, Y. Yamada, T. Konno, J. Liang, K. Sasaki, K. Inamura, T. Tanaka, and M. Koyanagi, "New Three-Dimensional Integration Technology Based on Reconfigured Wafer-on-Wafer Bonding Technique", IEEE International Electron Devices Meeting (IEDM), 985 (2007).
  13. K-W Lee, and M. Koyanagi, "Novel Interconnection Technology for Heterogeneous Integration of MEMS-LSI Multi-Chip Module", Journal of Microsystem and Technology, 16(3), 441 (2010) https://doi.org/10.1007/s00542-009-0941-z
  14. K-W Lee, A. Noriki, K. Kiyoyama, S. Kanno, W-C Jeong, T. Fukushima, T. Tanaka, M. Koyanagi, "3D Heterogeneous Opto-Electronic Integration Technology for System-on-Silicon (SOS)", IEEE International Electron Devices Meeting (IEDM), 531 (2009).
  15. Mitsumasa Koyanagi, Takafumi Fukushima, Kang-Wook Lee, and Tetsu Tanaka, "Super-chip Aiming Ultimate Heterogeneous Integration", IEICE, 93(11), 918 (2010).
  16. M. Koyanagi, "Roadblocks in Achieving Three-Dimensional LSI," Proc. 8th Symposium on Future Electron Devices, 50 (1989).
  17. T. Matsumoto, M. Satoh, K. Sakuma, H. Kurino, N. Miyakawa, H. Itani, and M. Koyanagi, "New three dimensional wafer bonding technology using the adhesive injection method", Jpn. J. Appl., 37(3B), 1217 (1998). https://doi.org/10.1143/JJAP.37.1217
  18. Y. Igarashi, T. Morooka, Y. Yamada, T. Nakamura, K.W.Lee, K.T. Park, H. Itani, and M. Koyanagi, "Filling of tungsten into deep trench using time-modulation CVD method", Proc. Int. Conf. Solid State Devices and Mater., 34 (2001).
  19. M. Koyanagi, T. Nakamura, Y. Yamada, H. Kikuchi, T. Fukushima, T. Tanaka, and H. Kurino, "Three-dimensional integration technology based on wafer bonding with vertical buried interconnections", IEEE Trans. Electron Devices, 53(11), 2799 (2006). https://doi.org/10.1109/TED.2006.884079
  20. T. Matsumoto, Y. Kudoh, M. Tanara, K.H. Yu, N. Miyakawa, H. Itani, T. Ichikizaki, H. Tsukamoto, and M. Koyanagi, "Threedimensional integration technology based on wafer bonding technique using micro-bumps", Proc. Int. Conf. Solid State Devices and Mater., 1073 (1995).
  21. M. Motoyoshi, K. Kamibayashi, M. Koyanagi, and M. Bonkohara, "Current and future 3-dimensional LSI technologies", Tech. Dig. 3D System Integration Conf., 8.1 (2007).
  22. Y. Ohara, A. Noriki, K. Sakuma, K.W. Lee, J. Bea, F. Yamada, T. Fukushima, T. Tanaka, and M. Koyanagi, "10 um fine pitch Cu/Sn micro-bumps for 3-D super-chip stack", Tech. Dig. 3D System Integration Conf., (2009).
  23. T. Matsumoto, M. Satoh, K. Sakuma, Hu. Kurino, N. Miyakawa, H. Itani, T. Ichikizaki, H. Tsukamoto, and M. Koyanagi, "New three-dimensional wafer bonding technology using adhesive injection method", Proc. Int. Conf. Solid State Devices and Mater., 460 (1997).
  24. H. Kurino, K-W. Lee, K. Sakuma, T. Nakamura, M. Koyanagi, "A New Wafer Scale Chip-on-Chip (W-COC) Packaging Technology using Adhesive Injection Method", Jpn. J.Appl.Phys., 38, 2406 (1999). https://doi.org/10.1143/JJAP.38.2406
  25. H. Kurino, K-W. Lee, T. Nakamura, K. Sakuma, K-T. Park, N. Miyakawa, H. Shimatzu, K. Inamura, M. Koyanagi, "Intelligent Image Sensor Chip with Three Dimensional Structure", IEEE International Electron Devices Meeting (IEDM), 879 (1999).
  26. K-W. Lee, T. Nakamura, T. Ono, Y. Yamada, H. Hashimoto, KT. Park, H. Kurino, M. Koyanagi, "Three Dimensional Shared Memory Fabricated using Wafer Stacking Technology", IEEE International Electron Devices Meeting (IEDM), 165 (2000).
  27. M. Koyanagi, Y. Nakagawa, K-W. Lee, T. Nakamura, Y. Yamada, K. Inamura, K-T. Park, H. Kurino, "Neuromorphic Vision Chip Fabricated using Three-Dimensional Integration Technology", IEEE Int. Solid State Circuits Conference (ISSCC), 270 (2001).
  28. T. Ono, T. Mizukusa, T. Nakamura, Y. Yamada, Y. Igarashi, T. Morooka, H. Kurino, and M. Koyanagi, "Three-dimensional processor system fabricated by wafer stacking technology", Pro. Int. Symp. Low-Power and High-Speed Chips (COOL Chips), 186 (2002).
  29. K. Hozawa, H. Miyazaki, and J. Yugami, "True influence of wafer-backside copper contamination during the back-end process on device characteristics," IEEE International Electron Devices Meeting (IEDM), 737 (2002).
  30. J.C. Bae, K.W. Lee, T. Fukushima, T. Tanaka, and M. Koyanagi, "Evaluation of Cu Contamination at Backside Surface of Thinned Wafer in 3-D Integration by Transient Capacitance Measurement", IEEE Electron Device Letters, (in press, January 2011).
  31. J.-C. Bea, K.-W. Lee, M. Murugesan, T. Fukushima, T. Tanaka and M. Koyanagi, "Evaluation of Copper Diffusion in Thinned Wafer with Extrinsic Gettering for 3D-LSI by Capacitance-Time (C-t) measurement", Int. Conf. On. Solid State Devices and Materials (SSDM), Sep. (2010).
  32. M. Murugesan, J-C. Bea, H. Kino, Y. Ohara, M. Kojima, A. Noriki, K-W. Lee, K. Kiyoyama, T. Fukushima, H. Nohira, T. Hattori, E. Ikenaga, T. Tanaka, M. Koyanagi, "Impact of Remnant Stress/Strain and Metal Contamination in Extremely Thin (-10 $\mu$m) Si Wafers in the 3D Integration Technology", IEEE International Electron Devices Meeting (IEDM), 361 (2009).
  33. Sung-Hwan Hwang, Byoung-Joon Kim, Sung-Yup Jung, Ho-Young Lee and Young-Chang Joo, "Thermo-Mechanical Analysis of Though-silicon-via in 3D Packaging", J. Microelectron. Packag. Soc., 17(1), 69 (2010).
  34. Eun-Kyung Kim, "Assessment of ultra-thin Si wafer thickness in 3D wafer stacking", Microelectronics Reliability, 50, 195 (2010). https://doi.org/10.1016/j.microrel.2009.10.002
  35. T. Fukushima, E. Iwata, T. Konno, J.-C. Bea, K.-W. Lee, T. Tanaka, and M. Koyanagi, "Surface tension-driven chip selfassembly with load-free hydrogen fluoride-assisted direct bonding at room temperature for three-dimensional integrated circuits", APPLIED PHYSICS LETTERS, 96(15), 154105 (2010). https://doi.org/10.1063/1.3328098
  36. Eiji Iwata, Takafumi Fukushima, Ohara Yuki, Kang-Wook Lee, Tetsu Tanaka, and Mitsumasa Koyanagi, "High-Precision Chip Alignment Using Self-Assembly Technology for Three-Dimensional Integrated Circuit Applications", IEICE, 93-C(11), 493 (2010).
  37. K.W. Lee, A. Noriki, K. Kiyoyama, T. Fukushima, T. Tanaka, and M. Koyanagi, "3D hybrid integration technology of CMOS, MEMS and photonic circuits for opto-electronic heterogeneous integrated systems", IEEE Trans. Electron Devices, (in press, March 2011).