Cu Thickness Effects on Bonding Characteristics in Cu-Cu Direct Bonds

Cu 두께에 따른 Cu-Cu 열 압착 웨이퍼 접합부의 접합 특성 평가

  • 김재원 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 정명혁 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • ;
  • ;
  • ;
  • 이학주 (한국기계연구원 나노융합기계연구본부) ;
  • 현승민 (한국기계연구원 나노융합기계연구본부) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2010.12.10
  • Accepted : 2010.12.23
  • Published : 2010.12.30

Abstract

Cu-Cu thermo-compression bonding process was successfully developed as functions of the deposited Cu thickness and $Ar+H_2$ forming gas annealing conditions before and after bonding step in order to find the low temperature bonding conditions of 3-D integrated technology where the interfacial toughness was measured by 4-point bending test. Pre-annealing with $Ar+H_2$ gas at $300^{\circ}C$ is effective to achieve enough interfacial adhesion energy irrespective of Cu film thickness. Successful Cu-Cu bonding process achieved in this study results in delamination at $Ta/SiO_2$ interface rather than Cu/Cu interface.

3차원 TSV 접합 시접합 두께 및 전, 후 추가 공정 처리가 Cu-Cu 열 압착 접합에 미치는 영향을 알아보기 위해 0.25, 0.5, 1.5, 3.0 um 두께로 Cu 박막을 제작한 후 접합 전 $300^{\circ}C$에서 15분간 $Ar+H_2$, 분위기에서 열처리 후 $300^{\circ}C$에서 30분 접합 후 후속 열처리 효과를 실시하여 계면접착에너지를 4점굽힘 시험법을 통해 평가하였다. FIB 이미지 확인 결과 Cu 두께에 상관없이 열 압착 접합이 잘 이루어져 있었다. 계면접착에너지 역시 두께에 상관없이 $4.34{\pm}0.17J/m^2$ 값을 얻었으며, 파괴된 계면을 분석 한 결과 $Ta/SiO_2$의 약한 계면에서 파괴가 일어났음을 확인하였다.

Keywords

References

  1. M. S. Yoon, "Introduction of TSV (Through Silicon Via) Technology", J. Microelectron. Packag. Soc. 16(1), 1 (2009).
  2. Jiang, T. and Luo, S., "3D Integration-Present and Future," Proceedings of 10th Electronics Packaging Technology Conferences, 373 (2008).
  3. Curran, B., Ndip, I., Guttovski, S. and Reichl, H., "Managing Losses in Through Silicon vias with Different Return Current Path Configurations," Proc. of 10th Electronics Packaging Technology Conferences, 206 (2008).
  4. S. Yoo, Y. K. Ko, Y. S. Shin, and C. W. Lee, "Technologies of TSV Filling and Solder Bumping for 3D Packaging", J. the Korean Society for Precision Engineering, 26(12), 18 (2009).
  5. M. H. Jeong, G. T. Lim, B. J. Kim, K. W. Lee, J. D. Kim, Y. C. Joo and Y. B. Park, "Interfacial Reaction Effect on Electrical Reliability of Cu Pillar/Sn Bumps", J. Electron. Mat., 39(11), 2368 (2010). https://doi.org/10.1007/s11664-010-1345-7
  6. C. S. Tan and R. Reif, "Observation of interfacial void formation in bonded copper layers", Appl. Plysics letter, 87 (2005).
  7. E. J. Jang, J. W. Kim, B. Kim, T. Matthias, H. J Lee, S. Hyun, and Y. B. Park, "Effect of $N_{2}+H_{2}$ Forming Gas Annealing on the Interfacial Bonding Strength of Cu-Cu thermo-compression Bonded Interfaces", J. Microelectron. Packag. Soc. 16(3), 1 (2009)
  8. E. J. Jang, S. Pfeiffer, B. Kim, T. Matthias, S. Hyun, H. J. Lee and Y. B. Park, "Effect of post-annealing conditions on interfacial adhesion energy of Cu-Cu bonding for 3-D IC integration", Kor. J. Mater. Res., 18(4), 204 (2008). https://doi.org/10.3740/MRSK.2008.18.4.204
  9. H. Zhenyu, Z. Suo, X. Guanghai, H. Jun, J. H. Prevost and N. Sukumar, "Initiation and arrest of an interfacial crack in a four-point bednd test", Eng. Fracture Mech., 72, 2584 (2005). https://doi.org/10.1016/j.engfracmech.2005.04.002
  10. J. W. Kim, M. H. Jeong, E. J. Jang, S. C. Park, E. Cakmak, B. Kim, T. Matthias, S. Kim, and Y. B. Park, "Effect of Bonding Process Conditions on the Interfacial Adhesion Energy of Al-Al Direct Bonds", Kor. J. Mater. Res., 20(6), 319 (2010). https://doi.org/10.3740/MRSK.2010.20.6.319
  11. R. H. Dauskardt, M. Lane, Q. Ma and N. Krishna, "Adhesion and debonding of multi-layer thin film structures", Eng Fract Mech., 61, 141 (1998). https://doi.org/10.1016/S0013-7944(98)00052-6
  12. P. G. Charalambides, J. Lund, A. G. Evans and R. M. McMeeking, "A test specimen for determining the fracture resistance of bimaterial interfaces", J. Appl. Mech., 111, 77 (1989).
  13. K. N. Chen, A. Fan, C. S. Tan and R. Reif, "Temperature and duration effects on microstructure evolution during copper wafer bonding", J. Electron. Mat., 32, 1371(2003). https://doi.org/10.1007/s11664-003-0103-5
  14. K. N. Chen, S. M. Chang, L. C. Shen and R. Reif, "Investigations of strngth of copper-bonded wafers with several quantitative and qualitative tests", J. Electron. Mat., 35, 1082 (2006). https://doi.org/10.1007/BF02692570
  15. E. J. Jang, S. Hyun, H. J. Lee and Y. B. Park, "Effect of Wet Pretreatment on Interfacial Adhesion Energy of Cu-Cu Thermocompression Bond for 3D IC Packages", J. Electron. Mater., 38(12), 2449 (2009). https://doi.org/10.1007/s11664-009-0942-9
  16. J. W. Kim, K. S. Kim, S. D. Kim, S. Hyun, H. J. Lee, and Y. B. Park, "A study of Cu Direct Bonding using Wet Chemical Methods" Proc. of 2010 Fall meeting The Korean Microelectronics and Packaging Society Conferences, Seoul, 63 (2010).
  17. Dauskardt RH, Lane MW, Ma Q, Krishna N. "Adhesion and de-bonding of multilayer thin film structures", Eng. Fract. Mech. 61, 141 (1998). https://doi.org/10.1016/S0013-7944(98)00052-6