Humidification Characterization of water-to-gas Membrane Humidifier for Polymer Electrolyte Membrane Fuel Cell

고분자 전해질 연료전지용 water-to-gas 막 가습기의 투과 특성

  • Chang, Dae-Kwon (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Lee, Yong-Taek (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
  • 창대권 (경희대학교 공과대학 화학공학과) ;
  • 이용택 (경희대학교 공과대학 화학공학과)
  • Received : 2010.11.02
  • Accepted : 2010.12.22
  • Published : 2010.12.30

Abstract

In this study, characterization and performance of membrane humidifier using membrane distillation was evaluated for moisture of fuel gas in the PEMFC. The data were expressed dew point. The best results show $51.19^{\circ}C$ at $60^{\circ}C$ of water temperature, $54.22^{\circ}C$ at 900 mL/min and $60.03^{\circ}C$ at 100 strands. The mass transfer modelling of membrane humidifier were able to predict humidification of fuel gases for operating PEMFC. When the membrane humidifier was applied to the 100 W stack, it showed stable voltage and power. The volume of membrane humidifier was small however, showed better performance than bubble humidifier.

본 연구에서는 고분자전해질 연료전지의 연료가습을 위하여 막 증발법을 적용한 막가습기를 제작하여 특징과 성능을 알아보았다. 막가습기 내부 물의 온도를 $30{\sim}60^{\circ}C$, 연료기체의 유속을 300~3,000 mL/min, 막 가닥수를 10, 50, 100 가닥으로 변화 하였을 때 결과를 dew point로 나타내었다. 그 결과 $60^{\circ}C$일 때 $51.19^{\circ}C$, 900 mL/min일 때 $54.22^{\circ}C$, 100 가닥일 때 $60.03^{\circ}C$로 연료 가습성능이 가장 좋았다. 특히, 막 가습기 물질 전달식의 모델링을 통해 연료전지에 적용할 때 막 가습기 공경 크기에 따른 반응기체의 가습량을 예측하는 것이 가능하였다. 100 W급 스택에 적용하였을 때, 전압과 출력값이 변화되지 않고 안정적으로 작동하였으며 제작한 막 가습기는 기존 기포가습기보다 부피는 훨씬 작으면서도 가습 성능은 우수한 것을 알 수 있었다.

Keywords

References

  1. M. Appleyard, "Electric vehicle derive systems", J. of Power Source, 37, 189 (1992). https://doi.org/10.1016/0378-7753(92)80077-O
  2. L. Zhang, M. Pan, and S. Quan, "Model predictive control of water management in PEMFC", J. of Power Source, 180, 322 (2008). https://doi.org/10.1016/j.jpowsour.2008.01.088
  3. J. O'M Bockris and S. Srinivasan, "Fuel Cells: Their electrode chemistry", McGraw-Hill, N.Y. (1969).
  4. T. V. Nguyen and R. E. White "A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells", J. Electrochem. Soc., 140, 2178 (1993). https://doi.org/10.1149/1.2220792
  5. G. Vasu, A. K. Tangirala, B. Viswanathan, and K. S. Dhathathreyan, "Continuous bubble humidification and control of relative humidity of $H_{2}$ for a PEMFC system", Int. J. of Hydrogen Energy, 33, 4640 (2008). https://doi.org/10.1016/j.ijhydene.2008.05.051
  6. B. Sunden and M. Faghri, "Transport phenomena in fuel cells", WIT Press (2005).
  7. L. James and D. Andrew, "Fuel cell systems explained", John Wiley & Sons, Inc., New York (2000).
  8. D. Staschewski, "Internal humidifying of PEM fuel cells", Int. J. Hydorgen Energy, 21, 381 (1996). https://doi.org/10.1016/0360-3199(95)00087-9
  9. L. Wu, J. Sun, and Q. Wang, "Poly(vinylidene fluoride)/ polyethersulfone blend membranes : Effect of solvent sort, polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology", J. Membr. Sci., 285, 290 (2006). https://doi.org/10.1016/j.memsci.2006.08.033
  10. H. W. Cho and W. C. Shin, "The prospect of membrane distillation", Membrane Journal, 7, 57 (1997).
  11. K. Y. Chung, "Membrane distillation of the aqueous glucose solution", Membrane Journal, 10(4), 230 (2000).
  12. M. Khayet, M. P. Godino, and J. I. Mengual, "Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method", Desalination, 157, 297 (2003). https://doi.org/10.1016/S0011-9164(03)00409-0
  13. S. H. Suh, W. K. Min, and S. C. Kim, "Molecular simulation studies for Knudsen diffusion in the overlapping sphere pore model", J. of the Korean Ins. of Chem. Eng., 37, 557 (1999).
  14. M. S. Chun and H. W. Kwak, "Study on hindered diffusion of single polyelectrolyte chain in micro-pores by employing Brownian dynamics simulations", Membrane Journal, 12, 207 (2002).
  15. G. Hinds, M. Stevens, J. Wilkinson, M. de Podesta, and S. Bell, "Novel in situ measurements of relative humidity in a polymer electrolyte membrane fuel cell", J. Power Sources, 186, 52 (2009). https://doi.org/10.1016/j.jpowsour.2008.09.109
  16. K. W. Lawson and D. R. Lloyd, "Membrane distillation", J. Membr. Sci., 124, 1 (1997). https://doi.org/10.1016/S0376-7388(96)00236-0
  17. C. H. Lee and W. H. Hong, "Effect of operating variables on the flux and selectivity in sweep gas membrane distillation for dilute aqueous isopropanol", J. Membr. Sci., 188, 79 (2001). https://doi.org/10.1016/S0376-7388(01)00373-8
  18. M. Khayet, P. Godino, and J. I. Mengual, "Theory and experiments on sweeping gas membrane distillation", J. Membr. Sci., 165, 261 (2000). https://doi.org/10.1016/S0376-7388(99)00236-7